Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -24,14 +24,6 @@ from transformers import (
|
|
| 24 |
TextIteratorStreamer,
|
| 25 |
)
|
| 26 |
|
| 27 |
-
# It's good practice to ensure compressed_tensors is installed when dealing with such models
|
| 28 |
-
try:
|
| 29 |
-
from compressed_tensors import save_compressed, load_compressed, BitmaskConfig
|
| 30 |
-
except ImportError:
|
| 31 |
-
print("compressed_tensors is not installed. Please install it using 'pip install compressed-tensors'")
|
| 32 |
-
sys.exit(1)
|
| 33 |
-
|
| 34 |
-
|
| 35 |
from transformers.image_utils import load_image
|
| 36 |
from gradio.themes import Soft
|
| 37 |
from gradio.themes.utils import colors, fonts, sizes
|
|
@@ -130,6 +122,37 @@ if torch.cuda.is_available():
|
|
| 130 |
|
| 131 |
print("Using device:", device)
|
| 132 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
MAX_MAX_NEW_TOKENS = 4096
|
| 134 |
DEFAULT_MAX_NEW_TOKENS = 2048
|
| 135 |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
|
@@ -146,17 +169,14 @@ model_v = Qwen3VLForConditionalGeneration.from_pretrained(
|
|
| 146 |
).to(device).eval()
|
| 147 |
|
| 148 |
# Load Nanonets-OCR2-3B
|
| 149 |
-
MODEL_ID_X = "
|
| 150 |
processor_x = AutoProcessor.from_pretrained(MODEL_ID_X, trust_remote_code=True)
|
| 151 |
-
# The fix is to load the model in a supported dtype like float16.
|
| 152 |
-
# The `compressed-tensors` library will handle the dequantization from Float8_e4m3fn.
|
| 153 |
model_x = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 154 |
MODEL_ID_X,
|
| 155 |
trust_remote_code=True,
|
| 156 |
-
torch_dtype=torch.
|
| 157 |
).to(device).eval()
|
| 158 |
|
| 159 |
-
|
| 160 |
# Load Dots.OCR from the local, patched directory
|
| 161 |
MODEL_PATH_D = "prithivMLmods/Dots.OCR-Latest-BF16"
|
| 162 |
processor_d = AutoProcessor.from_pretrained(MODEL_PATH_D, trust_remote_code=True)
|
|
@@ -285,10 +305,4 @@ with gr.Blocks(css=css, theme=steel_blue_theme) as demo:
|
|
| 285 |
)
|
| 286 |
|
| 287 |
if __name__ == "__main__":
|
| 288 |
-
# To run this, you would need to have example images in an "examples" directory
|
| 289 |
-
# or upload your own images.
|
| 290 |
-
if not os.path.exists("examples"):
|
| 291 |
-
os.makedirs("examples")
|
| 292 |
-
print("Created 'examples' directory. Please add your example images there.")
|
| 293 |
-
|
| 294 |
demo.queue(max_size=50).launch(mcp_server=True, ssr_mode=False, show_error=True)
|
|
|
|
| 24 |
TextIteratorStreamer,
|
| 25 |
)
|
| 26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
from transformers.image_utils import load_image
|
| 28 |
from gradio.themes import Soft
|
| 29 |
from gradio.themes.utils import colors, fonts, sizes
|
|
|
|
| 122 |
|
| 123 |
print("Using device:", device)
|
| 124 |
|
| 125 |
+
# CACHE_PATH = "./model_cache"
|
| 126 |
+
# if not os.path.exists(CACHE_PATH):
|
| 127 |
+
# os.makedirs(CACHE_PATH)
|
| 128 |
+
#
|
| 129 |
+
# model_path_d_local = snapshot_download(
|
| 130 |
+
# repo_id='rednote-hilab/dots.ocr',
|
| 131 |
+
# local_dir=os.path.join(CACHE_PATH, 'dots.ocr'),
|
| 132 |
+
# max_workers=20,
|
| 133 |
+
# local_dir_use_symlinks=False
|
| 134 |
+
# )
|
| 135 |
+
#
|
| 136 |
+
# config_file_path = os.path.join(model_path_d_local, "configuration_dots.py")
|
| 137 |
+
#
|
| 138 |
+
# if os.path.exists(config_file_path):
|
| 139 |
+
# with open(config_file_path, 'r') as f:
|
| 140 |
+
# input_code = f.read()
|
| 141 |
+
#
|
| 142 |
+
# lines = input_code.splitlines()
|
| 143 |
+
# if "class DotsVLProcessor" in input_code and not any("attributes = " in line for line in lines):
|
| 144 |
+
# output_lines = []
|
| 145 |
+
# for line in lines:
|
| 146 |
+
# output_lines.append(line)
|
| 147 |
+
# if line.strip().startswith("class DotsVLProcessor"):
|
| 148 |
+
# output_lines.append(" attributes = [\"image_processor\", \"tokenizer\"]")
|
| 149 |
+
#
|
| 150 |
+
# with open(config_file_path, 'w') as f:
|
| 151 |
+
# f.write('\n'.join(output_lines))
|
| 152 |
+
# print("Patched configuration_dots.py successfully.")
|
| 153 |
+
#
|
| 154 |
+
#sys.path.append(model_path_d_local)
|
| 155 |
+
|
| 156 |
MAX_MAX_NEW_TOKENS = 4096
|
| 157 |
DEFAULT_MAX_NEW_TOKENS = 2048
|
| 158 |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
|
|
|
| 169 |
).to(device).eval()
|
| 170 |
|
| 171 |
# Load Nanonets-OCR2-3B
|
| 172 |
+
MODEL_ID_X = "nanonets/Nanonets-OCR2-3B"
|
| 173 |
processor_x = AutoProcessor.from_pretrained(MODEL_ID_X, trust_remote_code=True)
|
|
|
|
|
|
|
| 174 |
model_x = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 175 |
MODEL_ID_X,
|
| 176 |
trust_remote_code=True,
|
| 177 |
+
torch_dtype=torch.bfloat16,
|
| 178 |
).to(device).eval()
|
| 179 |
|
|
|
|
| 180 |
# Load Dots.OCR from the local, patched directory
|
| 181 |
MODEL_PATH_D = "prithivMLmods/Dots.OCR-Latest-BF16"
|
| 182 |
processor_d = AutoProcessor.from_pretrained(MODEL_PATH_D, trust_remote_code=True)
|
|
|
|
| 305 |
)
|
| 306 |
|
| 307 |
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 308 |
demo.queue(max_size=50).launch(mcp_server=True, ssr_mode=False, show_error=True)
|