Spaces:
Running
Running
| # Ẩn mọi GPU để tránh PyTorch cố khởi tạo CUDA khi chạy trên Space CPU | |
| import os | |
| os.environ.setdefault("CUDA_VISIBLE_DEVICES", "") | |
| import argparse | |
| import datetime as dt | |
| import json | |
| from typing import Optional | |
| import numpy as np | |
| import safetensors.torch | |
| import torch | |
| import torchaudio | |
| from huggingface_hub import hf_hub_download | |
| from lhotse.utils import fix_random_seed | |
| from vocos import Vocos | |
| from zipvoice.models.zipvoice import ZipVoice | |
| from zipvoice.models.zipvoice_distill import ZipVoiceDistill | |
| from zipvoice.tokenizer.tokenizer import ( | |
| EmiliaTokenizer, | |
| EspeakTokenizer, | |
| LibriTTSTokenizer, | |
| SimpleTokenizer, | |
| ) | |
| from zipvoice.utils.checkpoint import load_checkpoint | |
| from zipvoice.utils.common import AttributeDict | |
| from zipvoice.utils.feature import VocosFbank | |
| HUGGINGFACE_REPO = "k2-fsa/ZipVoice" | |
| PRETRAINED_MODEL = { | |
| "zipvoice": "zipvoice/model.pt", | |
| "zipvoice_distill": "zipvoice_distill/model.pt", | |
| } | |
| TOKEN_FILE = { | |
| "zipvoice": "zipvoice/tokens.txt", | |
| "zipvoice_distill": "zipvoice_distill/tokens.txt", | |
| } | |
| MODEL_CONFIG = { | |
| "zipvoice": "zipvoice/zipvoice_base.json", | |
| "zipvoice_distill": "zipvoice_distill/zipvoice_base.json", | |
| } | |
| # torch.set_num_threads(1) | |
| # torch.set_num_interop_threads(1) | |
| def get_vocoder(vocos_local_path: Optional[str] = None): | |
| if vocos_local_path: | |
| vocoder = Vocos.from_hparams(f"{vocos_local_path}/config.yaml") | |
| state_dict = torch.load( | |
| f"{vocos_local_path}/pytorch_model.bin", | |
| weights_only=True, | |
| map_location="cpu", | |
| ) | |
| vocoder.load_state_dict(state_dict) | |
| else: | |
| vocoder = Vocos.from_pretrained("charactr/vocos-mel-24khz") | |
| return vocoder | |
| def generate_sentence( | |
| prompt_text: str, | |
| prompt_wav: str, | |
| text: str, | |
| model: torch.nn.Module, | |
| vocoder: torch.nn.Module, | |
| tokenizer: EmiliaTokenizer, | |
| feature_extractor: VocosFbank, | |
| device: torch.device, | |
| num_step: int = 16, | |
| guidance_scale: float = 1.0, | |
| speed: float = 1.0, | |
| t_shift: float = 0.5, | |
| target_rms: float = 0.1, | |
| feat_scale: float = 0.1, | |
| sampling_rate: int = 24000, | |
| ): | |
| """ | |
| Generate waveform of a text based on a given prompt | |
| waveform and its transcription. | |
| Args: | |
| save_path (str): Path to save the generated wav. | |
| prompt_text (str): Transcription of the prompt wav. | |
| prompt_wav (str): Path to the prompt wav file. | |
| text (str): Text to be synthesized into a waveform. | |
| model (torch.nn.Module): The model used for generation. | |
| vocoder (torch.nn.Module): The vocoder used to convert features to waveforms. | |
| tokenizer (EmiliaTokenizer): The tokenizer used to convert text to tokens. | |
| feature_extractor (VocosFbank): The feature extractor used to | |
| extract acoustic features. | |
| device (torch.device): The device on which computations are performed. | |
| num_step (int, optional): Number of steps for decoding. Defaults to 16. | |
| guidance_scale (float, optional): Scale for classifier-free guidance. | |
| Defaults to 1.0. | |
| speed (float, optional): Speed control. Defaults to 1.0. | |
| t_shift (float, optional): Time shift. Defaults to 0.5. | |
| target_rms (float, optional): Target RMS for waveform normalization. | |
| Defaults to 0.1. | |
| feat_scale (float, optional): Scale for features. | |
| Defaults to 0.1. | |
| sampling_rate (int, optional): Sampling rate for the waveform. | |
| Defaults to 24000. | |
| Returns: | |
| metrics (dict): Dictionary containing time and real-time | |
| factor metrics for processing. | |
| """ | |
| # Convert text to tokens | |
| tokens = tokenizer.texts_to_token_ids([text]) | |
| prompt_tokens = tokenizer.texts_to_token_ids([prompt_text]) | |
| # Load and preprocess prompt wav | |
| prompt_wav, prompt_sampling_rate = torchaudio.load(prompt_wav) | |
| if prompt_sampling_rate != sampling_rate: | |
| resampler = torchaudio.transforms.Resample( | |
| orig_freq=prompt_sampling_rate, new_freq=sampling_rate | |
| ) | |
| prompt_wav = resampler(prompt_wav) | |
| prompt_rms = torch.sqrt(torch.mean(torch.square(prompt_wav))) | |
| if prompt_rms < target_rms: | |
| prompt_wav = prompt_wav * target_rms / prompt_rms | |
| # Extract features from prompt wav | |
| prompt_features = feature_extractor.extract( | |
| prompt_wav, sampling_rate=sampling_rate | |
| ).to(device) | |
| prompt_features = prompt_features.unsqueeze(0) * feat_scale | |
| prompt_features_lens = torch.tensor([prompt_features.size(1)], device=device) | |
| # Start timing | |
| start_t = dt.datetime.now() | |
| # Generate features | |
| ( | |
| pred_features, | |
| pred_features_lens, | |
| pred_prompt_features, | |
| pred_prompt_features_lens, | |
| ) = model.sample( | |
| tokens=tokens, | |
| prompt_tokens=prompt_tokens, | |
| prompt_features=prompt_features, | |
| prompt_features_lens=prompt_features_lens, | |
| speed=speed, | |
| t_shift=t_shift, | |
| duration="predict", | |
| num_step=num_step, | |
| guidance_scale=guidance_scale, | |
| ) | |
| # Postprocess predicted features | |
| pred_features = pred_features.permute(0, 2, 1) / feat_scale # (B, C, T) | |
| # Start vocoder processing | |
| start_vocoder_t = dt.datetime.now() | |
| wav = vocoder.decode(pred_features).squeeze(1).clamp(-1, 1) | |
| # Calculate processing times and real-time factors | |
| t = (dt.datetime.now() - start_t).total_seconds() | |
| t_no_vocoder = (start_vocoder_t - start_t).total_seconds() | |
| t_vocoder = (dt.datetime.now() - start_vocoder_t).total_seconds() | |
| wav_seconds = wav.shape[-1] / sampling_rate | |
| rtf = t / wav_seconds | |
| rtf_no_vocoder = t_no_vocoder / wav_seconds | |
| rtf_vocoder = t_vocoder / wav_seconds | |
| # metrics = { | |
| # "t": t, | |
| # "t_no_vocoder": t_no_vocoder, | |
| # "t_vocoder": t_vocoder, | |
| # "wav_seconds": wav_seconds, | |
| # "rtf": rtf, | |
| # "rtf_no_vocoder": rtf_no_vocoder, | |
| # "rtf_vocoder": rtf_vocoder, | |
| # } | |
| # Adjust wav volume if necessary | |
| if prompt_rms < target_rms: | |
| wav = wav * prompt_rms / target_rms | |
| # torchaudio.save(save_path, wav.cpu(), sample_rate=sampling_rate) | |
| # return metrics | |
| return wav.cpu() | |
| model_defaults = { | |
| "zipvoice": { | |
| "num_step": 16, | |
| "guidance_scale": 1.0, | |
| }, | |
| "zipvoice_distill": { | |
| "num_step": 8, | |
| "guidance_scale": 3.0, | |
| }, | |
| } | |
| # device = torch.device("cuda", 0) | |
| if torch.cuda.is_available(): | |
| device = torch.device("cuda") | |
| print("Using GPU") | |
| else: | |
| device = torch.device("cpu") | |
| print("Using CPU") | |
| print("Loading model...") | |
| model_config = "config.json" | |
| with open(model_config, "r") as f: | |
| model_config = json.load(f) | |
| token_file = "tokens.txt" | |
| tokenizer = EspeakTokenizer(token_file=token_file, lang="vi") | |
| tokenizer_config = {"vocab_size": tokenizer.vocab_size, "pad_id": tokenizer.pad_id} | |
| model_ckpt = "iter-525000-avg-2.pt" | |
| model = ZipVoice( | |
| **model_config["model"], | |
| **tokenizer_config, | |
| ) | |
| load_checkpoint(filename=model_ckpt, model=model, strict=True) | |
| model = model.to(device) | |
| model.eval() | |
| vocoder = get_vocoder(None) | |
| vocoder = vocoder.to(device) | |
| vocoder.eval() | |
| if model_config["feature"]["type"] == "vocos": | |
| feature_extractor = VocosFbank() | |
| else: | |
| raise NotImplementedError( | |
| f"Unsupported feature type: {model_config['feature']['type']}" | |
| ) | |
| sampling_rate = model_config["feature"]["sampling_rate"] | |
| # generate_sentence( | |
| # save_path=res_wav_path, | |
| # prompt_text=prompt_text, | |
| # prompt_wav=prompt_wav, | |
| # text=text, | |
| # model=model, | |
| # vocoder=vocoder, | |
| # tokenizer=tokenizer, | |
| # feature_extractor=feature_extractor, | |
| # device=device, | |
| # num_step=16, | |
| # guidance_scale=1.0, | |
| # speed=speed, | |
| # t_shift=0.5, | |
| # target_rms=0.1, | |
| # feat_scale=0.1, | |
| # sampling_rate=sampling_rate, | |
| # ) | |
| # print("Done") |