File size: 7,900 Bytes
94fddba
 
 
e53ffe1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
314f0f9
 
e53ffe1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3efe5b4
 
faf39d1
 
 
 
 
 
 
e53ffe1
 
fbc5b9e
e53ffe1
 
 
 
fbc5b9e
e53ffe1
 
 
 
 
10177f2
e53ffe1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
# Ẩn mọi GPU để tránh PyTorch cố khởi tạo CUDA khi chạy trên Space CPU
import os
os.environ.setdefault("CUDA_VISIBLE_DEVICES", "")
import argparse
import datetime as dt
import json
from typing import Optional

import numpy as np
import safetensors.torch
import torch
import torchaudio
from huggingface_hub import hf_hub_download
from lhotse.utils import fix_random_seed
from vocos import Vocos

from zipvoice.models.zipvoice import ZipVoice
from zipvoice.models.zipvoice_distill import ZipVoiceDistill
from zipvoice.tokenizer.tokenizer import (
    EmiliaTokenizer,
    EspeakTokenizer,
    LibriTTSTokenizer,
    SimpleTokenizer,
)
from zipvoice.utils.checkpoint import load_checkpoint
from zipvoice.utils.common import AttributeDict
from zipvoice.utils.feature import VocosFbank

HUGGINGFACE_REPO = "k2-fsa/ZipVoice"
PRETRAINED_MODEL = {
    "zipvoice": "zipvoice/model.pt",
    "zipvoice_distill": "zipvoice_distill/model.pt",
}
TOKEN_FILE = {
    "zipvoice": "zipvoice/tokens.txt",
    "zipvoice_distill": "zipvoice_distill/tokens.txt",
}
MODEL_CONFIG = {
    "zipvoice": "zipvoice/zipvoice_base.json",
    "zipvoice_distill": "zipvoice_distill/zipvoice_base.json",
}

# torch.set_num_threads(1)
# torch.set_num_interop_threads(1)

def get_vocoder(vocos_local_path: Optional[str] = None):
    if vocos_local_path:
        vocoder = Vocos.from_hparams(f"{vocos_local_path}/config.yaml")
        state_dict = torch.load(
            f"{vocos_local_path}/pytorch_model.bin",
            weights_only=True,
            map_location="cpu",
        )
        vocoder.load_state_dict(state_dict)
    else:
        vocoder = Vocos.from_pretrained("charactr/vocos-mel-24khz")
    return vocoder


def generate_sentence(
    prompt_text: str,
    prompt_wav: str,
    text: str,
    model: torch.nn.Module,
    vocoder: torch.nn.Module,
    tokenizer: EmiliaTokenizer,
    feature_extractor: VocosFbank,
    device: torch.device,
    num_step: int = 16,
    guidance_scale: float = 1.0,
    speed: float = 1.0,
    t_shift: float = 0.5,
    target_rms: float = 0.1,
    feat_scale: float = 0.1,
    sampling_rate: int = 24000,
):
    """
    Generate waveform of a text based on a given prompt
        waveform and its transcription.

    Args:
        save_path (str): Path to save the generated wav.
        prompt_text (str): Transcription of the prompt wav.
        prompt_wav (str): Path to the prompt wav file.
        text (str): Text to be synthesized into a waveform.
        model (torch.nn.Module): The model used for generation.
        vocoder (torch.nn.Module): The vocoder used to convert features to waveforms.
        tokenizer (EmiliaTokenizer): The tokenizer used to convert text to tokens.
        feature_extractor (VocosFbank): The feature extractor used to
            extract acoustic features.
        device (torch.device): The device on which computations are performed.
        num_step (int, optional): Number of steps for decoding. Defaults to 16.
        guidance_scale (float, optional): Scale for classifier-free guidance.
            Defaults to 1.0.
        speed (float, optional): Speed control. Defaults to 1.0.
        t_shift (float, optional): Time shift. Defaults to 0.5.
        target_rms (float, optional): Target RMS for waveform normalization.
            Defaults to 0.1.
        feat_scale (float, optional): Scale for features.
            Defaults to 0.1.
        sampling_rate (int, optional): Sampling rate for the waveform.
            Defaults to 24000.
    Returns:
        metrics (dict): Dictionary containing time and real-time
            factor metrics for processing.
    """
    # Convert text to tokens
    tokens = tokenizer.texts_to_token_ids([text])
    prompt_tokens = tokenizer.texts_to_token_ids([prompt_text])

    # Load and preprocess prompt wav
    prompt_wav, prompt_sampling_rate = torchaudio.load(prompt_wav)

    if prompt_sampling_rate != sampling_rate:
        resampler = torchaudio.transforms.Resample(
            orig_freq=prompt_sampling_rate, new_freq=sampling_rate
        )
        prompt_wav = resampler(prompt_wav)

    prompt_rms = torch.sqrt(torch.mean(torch.square(prompt_wav)))
    if prompt_rms < target_rms:
        prompt_wav = prompt_wav * target_rms / prompt_rms

    # Extract features from prompt wav
    prompt_features = feature_extractor.extract(
        prompt_wav, sampling_rate=sampling_rate
    ).to(device)

    prompt_features = prompt_features.unsqueeze(0) * feat_scale
    prompt_features_lens = torch.tensor([prompt_features.size(1)], device=device)

    # Start timing
    start_t = dt.datetime.now()

    # Generate features
    (
        pred_features,
        pred_features_lens,
        pred_prompt_features,
        pred_prompt_features_lens,
    ) = model.sample(
        tokens=tokens,
        prompt_tokens=prompt_tokens,
        prompt_features=prompt_features,
        prompt_features_lens=prompt_features_lens,
        speed=speed,
        t_shift=t_shift,
        duration="predict",
        num_step=num_step,
        guidance_scale=guidance_scale,
    )

    # Postprocess predicted features
    pred_features = pred_features.permute(0, 2, 1) / feat_scale  # (B, C, T)

    # Start vocoder processing
    start_vocoder_t = dt.datetime.now()
    wav = vocoder.decode(pred_features).squeeze(1).clamp(-1, 1)

    # Calculate processing times and real-time factors
    t = (dt.datetime.now() - start_t).total_seconds()
    t_no_vocoder = (start_vocoder_t - start_t).total_seconds()
    t_vocoder = (dt.datetime.now() - start_vocoder_t).total_seconds()
    wav_seconds = wav.shape[-1] / sampling_rate
    rtf = t / wav_seconds
    rtf_no_vocoder = t_no_vocoder / wav_seconds
    rtf_vocoder = t_vocoder / wav_seconds
    # metrics = {
    #     "t": t,
    #     "t_no_vocoder": t_no_vocoder,
    #     "t_vocoder": t_vocoder,
    #     "wav_seconds": wav_seconds,
    #     "rtf": rtf,
    #     "rtf_no_vocoder": rtf_no_vocoder,
    #     "rtf_vocoder": rtf_vocoder,
    # }

    # Adjust wav volume if necessary
    if prompt_rms < target_rms:
        wav = wav * prompt_rms / target_rms
    # torchaudio.save(save_path, wav.cpu(), sample_rate=sampling_rate)
    # return metrics
    return wav.cpu()

model_defaults = {
    "zipvoice": {
        "num_step": 16,
        "guidance_scale": 1.0,
    },
    "zipvoice_distill": {
        "num_step": 8,
        "guidance_scale": 3.0,
    },
}

# device = torch.device("cuda", 0)

if torch.cuda.is_available():
    device = torch.device("cuda")
    print("Using GPU")
else:
    device = torch.device("cpu")
    print("Using CPU")


print("Loading model...")
model_config = "config.json"

with open(model_config, "r") as f:
    model_config = json.load(f)

token_file = "tokens.txt"

tokenizer = EspeakTokenizer(token_file=token_file, lang="vi")

tokenizer_config = {"vocab_size": tokenizer.vocab_size, "pad_id": tokenizer.pad_id}

model_ckpt = "iter-525000-avg-2.pt"

model = ZipVoice(
    **model_config["model"],
    **tokenizer_config,
)

load_checkpoint(filename=model_ckpt, model=model, strict=True)

model = model.to(device)
model.eval()

vocoder = get_vocoder(None)
vocoder = vocoder.to(device)
vocoder.eval()

if model_config["feature"]["type"] == "vocos":
    feature_extractor = VocosFbank()
else:
    raise NotImplementedError(
        f"Unsupported feature type: {model_config['feature']['type']}"
    )
sampling_rate = model_config["feature"]["sampling_rate"]

# generate_sentence(
#     save_path=res_wav_path,
#     prompt_text=prompt_text,
#     prompt_wav=prompt_wav,
#     text=text,
#     model=model,
#     vocoder=vocoder,
#     tokenizer=tokenizer,
#     feature_extractor=feature_extractor,
#     device=device,
#     num_step=16,
#     guidance_scale=1.0,
#     speed=speed,
#     t_shift=0.5,
#     target_rms=0.1,
#     feat_scale=0.1,
#     sampling_rate=sampling_rate,
# )

# print("Done")