Spaces:
Running
on
Zero
Running
on
Zero
| import gradio as gr | |
| import numpy as np | |
| import random | |
| import torch | |
| import spaces | |
| from PIL import Image | |
| from diffusers import FlowMatchEulerDiscreteScheduler | |
| from optimization import optimize_pipeline_ | |
| from qwenimage.pipeline_qwenimage_edit_plus import QwenImageEditPlusPipeline | |
| from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel | |
| from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3 | |
| import math | |
| from huggingface_hub import hf_hub_download | |
| from safetensors.torch import load_file | |
| from PIL import Image | |
| import os | |
| import gradio as gr | |
| from gradio_client import Client, handle_file | |
| import tempfile | |
| from huggingface_hub import InferenceClient | |
| # --- Model Loading --- | |
| dtype = torch.bfloat16 | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| scheduler_config = { | |
| "base_image_seq_len": 256, | |
| "base_shift": math.log(3), | |
| "invert_sigmas": False, | |
| "max_image_seq_len": 8192, | |
| "max_shift": math.log(3), | |
| "num_train_timesteps": 1000, | |
| "shift": 1.0, | |
| "shift_terminal": None, | |
| "stochastic_sampling": False, | |
| "time_shift_type": "exponential", | |
| "use_beta_sigmas": False, | |
| "use_dynamic_shifting": True, | |
| "use_exponential_sigmas": False, | |
| "use_karras_sigmas": False, | |
| } | |
| scheduler = FlowMatchEulerDiscreteScheduler.from_config(scheduler_config) | |
| pipe = QwenImageEditPlusPipeline.from_pretrained("Qwen/Qwen-Image-Edit-2509", scheduler=scheduler, torch_dtype=dtype) | |
| # Load the relight LoRA | |
| pipe.load_lora_weights("dx8152/Qwen-Image-Edit-2509-Relight", | |
| weight_name="Qwen-Edit-Relight.safetensors", adapter_name="relight") | |
| pipe.load_lora_weights("lightx2v/Qwen-Image-Lightning", | |
| weight_name="Qwen-Image-Lightning-4steps-V2.0-bf16.safetensors", adapter_name="lightning") | |
| pipe.set_adapters(["relight", "lightning"], adapter_weights=[1., 1.]) | |
| pipe.fuse_lora(adapter_names=["relight", "lightning"], lora_scale=1) | |
| pipe.unload_lora_weights() | |
| pipe.transformer.__class__ = QwenImageTransformer2DModel | |
| pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3()) | |
| pipe.to(device) | |
| optimize_pipeline_(pipe, image=[Image.new("RGB", (1024, 1024)), Image.new("RGB", (1024, 1024))], prompt="prompt") | |
| MAX_SEED = np.iinfo(np.int32).max | |
| translation_client = InferenceClient( | |
| api_key=os.environ.get("HF_TOKEN"), | |
| ) | |
| def translate_to_chinese(text: str) -> str: | |
| """Translate any language text to Chinese using Qwen API.""" | |
| if not text or not text.strip(): | |
| return "" | |
| # Check if text is already primarily Chinese | |
| chinese_chars = sum(1 for char in text if '\u4e00' <= char <= '\u9fff') | |
| if chinese_chars / max(len(text), 1) > 0.5: | |
| # Already mostly Chinese, return as is | |
| return text | |
| try: | |
| completion = translation_client.chat.completions.create( | |
| model="Qwen/Qwen3-Next-80B-A3B-Instruct:novita", | |
| messages=[ | |
| { | |
| "role": "system", | |
| "content": "You are a professional translator. Translate the user's text to Chinese. Only output the translated text, nothing else." | |
| }, | |
| { | |
| "role": "user", | |
| "content": f"Translate this to Chinese: {text}" | |
| } | |
| ], | |
| max_tokens=500, | |
| ) | |
| translated = completion.choices[0].message.content.strip() | |
| print(f"Translated '{text}' to '{translated}'") | |
| return translated | |
| except Exception as e: | |
| print(f"Translation error: {e}") | |
| # Fallback to original text if translation fails | |
| return text | |
| def _generate_video_segment(input_image_path: str, output_image_path: str, prompt: str, request: gr.Request) -> str: | |
| """Generates a single video segment using the external service.""" | |
| x_ip_token = request.headers['x-ip-token'] | |
| video_client = Client("multimodalart/wan-2-2-first-last-frame", headers={"x-ip-token": x_ip_token}) | |
| result = video_client.predict( | |
| start_image_pil=handle_file(input_image_path), | |
| end_image_pil=handle_file(output_image_path), | |
| prompt=prompt, api_name="/generate_video", | |
| ) | |
| return result[0]["video"] | |
| def build_relight_prompt(light_type, light_type_custom, light_direction, light_direction_custom, | |
| light_intensity, light_intensity_custom, illumination_env, | |
| illumination_env_custom, prompt): | |
| """Build the relighting prompt based on user selections - Qwen style.""" | |
| # Priority 1: User's prompt (translated to Chinese if needed) | |
| if prompt and prompt.strip(): | |
| translated = translate_to_chinese(prompt) | |
| # Add trigger word if not already present | |
| if "重新照明" not in translated: | |
| return f"重新照明,{translated}" | |
| return translated | |
| # Priority 2: Build from controls | |
| prompt_parts = ["重新照明"] | |
| # Light type descriptions (expanded from IC-Light style but in Chinese) | |
| light_descriptions = { | |
| "none": "", | |
| "soft_window": "窗帘透光(柔和漫射)", | |
| "golden_hour": "金色黄昏的温暖光线", | |
| "studio": "专业摄影棚的均匀光线", | |
| "dramatic": "戏剧性的高对比度光线", | |
| "natural": "自然日光", | |
| "neon": "霓虹灯光效果", | |
| "candlelight": "烛光的温暖氛围", | |
| "moonlight": "月光的冷色调", | |
| "sunrise": "日出的柔和光线", | |
| "sunset_sea": "海面日落光线", | |
| "overcast": "阴天的柔和漫射光", | |
| "harsh_sun": "强烈的正午阳光", | |
| "twilight": "黄昏时分的神秘光线", | |
| "aurora": "极光般的多彩光线", | |
| "firelight": "篝火的跳动光线", | |
| "lightning": "闪电的瞬间强光", | |
| "underwater": "水下的柔和蓝光", | |
| "foggy": "雾气中的柔和扩散光", | |
| "magic": "魔法般的神秘光芒", | |
| "cyberpunk": "赛博朋克风格的RGB霓虹光", | |
| "warm_home": "家庭温馨的暖色光", | |
| "cold_industrial": "冷酷的工业照明", | |
| "spotlight": "聚光灯效果", | |
| "rim_light": "边缘光效果", | |
| } | |
| # Direction descriptions (from IC-Light) | |
| direction_descriptions = { | |
| "none": "", | |
| "front": "正面照射", | |
| "side": "侧面照射", | |
| "left": "左侧照射", | |
| "right": "右侧照射", | |
| "back": "背后照射(逆光)", | |
| "top": "上方照射", | |
| "bottom": "下方照射", | |
| "diagonal": "对角线照射", | |
| } | |
| # Intensity descriptions | |
| intensity_descriptions = { | |
| "none": "", | |
| "soft": "柔和强度", | |
| "medium": "中等强度", | |
| "strong": "强烈强度", | |
| } | |
| # Illumination environments (from IC-Light vary, translated) | |
| illumination_envs = { | |
| "none": "", | |
| "sunshine_window": "阳光从窗户透入", | |
| "neon_city": "霓虹夜景,城市灯光", | |
| "sci_fi_rgb": "科幻RGB发光,赛博朋克风格", | |
| "warm_bedroom": "温暖氛围,家中,卧室", | |
| "magic_lit": "魔法照明", | |
| "gothic_cave": "邪恶哥特风格,洞穴中", | |
| "light_shadow": "光影交错", | |
| "window_shadow": "窗户投影", | |
| "soft_studio": "柔和摄影棚灯光", | |
| "cozy_bedroom": "家庭氛围,温馨卧室照明", | |
| "wong_kar_wai": "王家卫风格霓虹灯,温暖色调", | |
| "moonlight_curtains": "月光透过窗帘", | |
| "stormy_sky": "暴风雨天空照明", | |
| "underwater_glow": "水下发光,深海", | |
| "foggy_forest": "雾中森林黎明", | |
| "meadow_golden": "草地上的黄金时刻", | |
| "rainbow_neon": "彩虹反射,霓虹", | |
| "apocalyptic": "末日烟雾氛围", | |
| "emergency_red": "红色紧急灯光", | |
| "mystical_forest": "神秘发光,魔法森林", | |
| "campfire": "篝火光芒", | |
| "industrial_harsh": "严酷工业照明", | |
| "mountain_sunrise": "山中日出", | |
| "desert_evening": "沙漠黄昏", | |
| "dark_alley": "黑暗小巷的月光", | |
| "fairground": "游乐场的金色光芒", | |
| "forest_midnight": "森林深夜", | |
| "twilight_purple": "黄昏的紫粉色调", | |
| "foggy_morning": "雾蒙蒙的早晨", | |
| "rustic_candle": "乡村风格烛光", | |
| "office_fluorescent": "办公室荧光灯", | |
| "storm_lightning": "暴风雨中的闪电", | |
| "fireplace_night": "夜晚壁炉的温暖光芒", | |
| "ethereal_magic": "空灵发光,魔法森林", | |
| "beach_dusky": "海滩的黄昏", | |
| "trees_afternoon": "树林中的午后光线", | |
| "urban_blue_neon": "蓝色霓虹灯,城市街道", | |
| "rain_police": "雨中红蓝警灯", | |
| "aurora_arctic": "极光,北极景观", | |
| "foggy_mountains": "雾中山峦日出", | |
| "city_skyline": "城市天际线的黄金时刻", | |
| "twilight_mist": "神秘黄昏,浓雾", | |
| "forest_rays": "森林空地的清晨光线", | |
| "festival_lantern": "节日多彩灯笼光", | |
| "stained_glass": "彩色玻璃的柔和光芒", | |
| "dark_spotlight": "黑暗房间的强烈聚光", | |
| "lake_evening": "湖面柔和的黄昏光", | |
| "cave_crystal": "洞穴水晶反射", | |
| "autumn_forest": "秋林中的鲜艳光线", | |
| "snowfall_dusk": "黄昏轻柔降雪", | |
| "winter_hazy": "冬日清晨的朦胧光", | |
| "rain_city": "雨中城市灯光倒影", | |
| "trees_golden_sun": "金色阳光穿过树林", | |
| "fireflies_summer": "萤火虫点亮夏夜", | |
| "forge_embers": "锻造炉的发光余烬", | |
| "gothic_castle": "哥特城堡的昏暗烛光", | |
| "starlight_midnight": "午夜明亮星光", | |
| "rural_sunset": "乡村的温暖日落", | |
| "haunted_flicker": "闹鬼房屋的闪烁灯光", | |
| "desert_mirage": "沙漠日落海市蜃楼般的光", | |
| "storm_beams": "风暴云中穿透的金色光束", | |
| } | |
| # Build the prompt - Qwen style (comma-separated, Chinese) | |
| # Handle custom light type | |
| if light_type == "custom" and light_type_custom and light_type_custom.strip(): | |
| prompt_parts.append(translate_to_chinese(light_type_custom)) | |
| elif light_type != "none": | |
| prompt_parts.append(light_descriptions.get(light_type, "")) | |
| # Handle custom illumination environment | |
| if illumination_env == "custom" and illumination_env_custom and illumination_env_custom.strip(): | |
| prompt_parts.append(translate_to_chinese(illumination_env_custom)) | |
| elif illumination_env != "none": | |
| prompt_parts.append(illumination_envs.get(illumination_env, "")) | |
| # Handle custom light direction | |
| if light_direction == "custom" and light_direction_custom and light_direction_custom.strip(): | |
| prompt_parts.append(translate_to_chinese(light_direction_custom)) | |
| elif light_direction != "none": | |
| prompt_parts.append(direction_descriptions.get(light_direction, "")) | |
| # Handle custom light intensity | |
| if light_intensity == "custom" and light_intensity_custom and light_intensity_custom.strip(): | |
| prompt_parts.append(translate_to_chinese(light_intensity_custom)) | |
| elif light_intensity != "none": | |
| prompt_parts.append(intensity_descriptions.get(light_intensity, "")) | |
| final_prompt = ",".join([p for p in prompt_parts if p]) | |
| # Add instruction if we have settings | |
| if len(prompt_parts) > 1: | |
| final_prompt += ",对图片进行重新照明" | |
| return final_prompt if len(prompt_parts) > 1 else "重新照明,使用自然光线对图片进行重新照明" | |
| def infer_relight( | |
| image, | |
| light_type, | |
| light_type_custom, | |
| light_direction, | |
| light_direction_custom, | |
| light_intensity, | |
| light_intensity_custom, | |
| illumination_env, | |
| illumination_env_custom, | |
| prompt, | |
| seed, | |
| randomize_seed, | |
| true_guidance_scale, | |
| num_inference_steps, | |
| height, | |
| width, | |
| prev_output = None, | |
| progress=gr.Progress(track_tqdm=True) | |
| ): | |
| final_prompt = build_relight_prompt(light_type, light_type_custom, light_direction, | |
| light_direction_custom, light_intensity, | |
| light_intensity_custom, illumination_env, | |
| illumination_env_custom, prompt) | |
| print(f"Generated Prompt: {final_prompt}") | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| # Choose input image (prefer uploaded, else last output) | |
| pil_images = [] | |
| if image is not None: | |
| if isinstance(image, Image.Image): | |
| pil_images.append(image.convert("RGB")) | |
| elif hasattr(image, "name"): | |
| pil_images.append(Image.open(image.name).convert("RGB")) | |
| elif prev_output: | |
| pil_images.append(prev_output.convert("RGB")) | |
| if len(pil_images) == 0: | |
| raise gr.Error("Please upload an image first.") | |
| result = pipe( | |
| image=pil_images, | |
| prompt=final_prompt, | |
| height=height if height != 0 else None, | |
| width=width if width != 0 else None, | |
| num_inference_steps=num_inference_steps, | |
| generator=generator, | |
| true_cfg_scale=true_guidance_scale, | |
| num_images_per_prompt=1, | |
| ).images[0] | |
| return result, seed, final_prompt | |
| def create_video_between_images(input_image, output_image, prompt: str, request: gr.Request) -> str: | |
| """Create a video between the input and output images.""" | |
| if input_image is None or output_image is None: | |
| raise gr.Error("Both input and output images are required to create a video.") | |
| try: | |
| with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmp: | |
| input_image.save(tmp.name) | |
| input_image_path = tmp.name | |
| output_pil = Image.fromarray(output_image.astype('uint8')) | |
| with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmp: | |
| output_pil.save(tmp.name) | |
| output_image_path = tmp.name | |
| video_path = _generate_video_segment( | |
| input_image_path, | |
| output_image_path, | |
| prompt if prompt else "Relighting transformation", | |
| request | |
| ) | |
| return video_path | |
| except Exception as e: | |
| raise gr.Error(f"Video generation failed: {e}") | |
| # --- UI --- | |
| css = ''' | |
| #col-container { max-width: 1200px; margin: 0 auto; } | |
| .dark .progress-text{color: white !important} | |
| #examples{max-width: 1200px; margin: 0 auto; } | |
| .radio-group {display: grid; grid-template-columns: repeat(auto-fit, minmax(200px, 1fr)); gap: 8px;} | |
| .radio-group [data-testid="block-info"] { display: none !important } | |
| ''' | |
| def reset_all(): | |
| return ["none", "", "none", "", "none", "", "none", "", "", False] | |
| def end_reset(): | |
| return False | |
| def update_dimensions_on_upload(image): | |
| if image is None: | |
| return 1024, 1024 | |
| original_width, original_height = image.size | |
| if original_width > original_height: | |
| new_width = 1024 | |
| aspect_ratio = original_height / original_width | |
| new_height = int(new_width * aspect_ratio) | |
| else: | |
| new_height = 1024 | |
| aspect_ratio = original_width / original_height | |
| new_width = int(new_height * aspect_ratio) | |
| # Ensure dimensions are multiples of 8 | |
| new_width = (new_width // 8) * 8 | |
| new_height = (new_height // 8) * 8 | |
| return new_width, new_height | |
| def toggle_custom_textbox(choice): | |
| """Show textbox when Custom is selected""" | |
| return gr.update(visible=(choice == "custom")) | |
| with gr.Blocks(theme=gr.themes.Citrus(), css=css) as demo: | |
| with gr.Column(elem_id="col-container"): | |
| gr.Markdown("## 💡 Qwen Image Edit — Relighting Control") | |
| gr.Markdown(""" | |
| Qwen Image Edit 2509 for Image Relighting ✨ | |
| Using [dx8152's Qwen-Image-Edit-2509-Relight LoRA](https://huggingface.co/dx8152/Qwen-Image-Edit-2509-Relight) and [lightx2v/Qwen-Image-Lightning](https://huggingface.co/lightx2v/Qwen-Image-Lightning) for 4-step inference 💨 | |
| """ | |
| ) | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| image = gr.Image(label="Input Image", type="pil") | |
| prev_output = gr.Image(value=None, visible=False) | |
| is_reset = gr.Checkbox(value=False, visible=False) | |
| with gr.Tab("Compose Prompt"): | |
| with gr.Accordion("💡 Light Type", open=True): | |
| light_type = gr.Radio( | |
| choices=[ | |
| ("None", "none"), | |
| ("Soft Window Light", "soft_window"), | |
| ("Golden Hour", "golden_hour"), | |
| ("Studio Lighting", "studio"), | |
| ("Dramatic", "dramatic"), | |
| ("Natural Daylight", "natural"), | |
| ("Neon", "neon"), | |
| ("Candlelight", "candlelight"), | |
| ("Moonlight", "moonlight"), | |
| ("Sunrise", "sunrise"), | |
| ("Sunset over Sea", "sunset_sea"), | |
| ("Overcast", "overcast"), | |
| ("Harsh Sunlight", "harsh_sun"), | |
| ("Twilight", "twilight"), | |
| ("Aurora", "aurora"), | |
| ("Firelight", "firelight"), | |
| ("Lightning", "lightning"), | |
| ("Underwater", "underwater"), | |
| ("Foggy", "foggy"), | |
| ("Magic Light", "magic"), | |
| ("Cyberpunk", "cyberpunk"), | |
| ("Warm Home", "warm_home"), | |
| ("Cold Industrial", "cold_industrial"), | |
| ("Spotlight", "spotlight"), | |
| ("Rim Light", "rim_light"), | |
| ("Custom", "custom"), | |
| ], | |
| value="none", | |
| elem_classes="radio-group" | |
| ) | |
| light_type_custom = gr.Textbox( | |
| label="Custom Light Type", | |
| placeholder="e.g., Bioluminescent glow, Laser light show, etc.", | |
| visible=False | |
| ) | |
| with gr.Accordion("🧭 Light Direction", open=True): | |
| light_direction = gr.Radio( | |
| choices=[ | |
| ("None", "none"), | |
| ("Front", "front"), | |
| ("Side", "side"), | |
| ("Left", "left"), | |
| ("Right", "right"), | |
| ("Back (Backlight)", "back"), | |
| ("Top", "top"), | |
| ("Bottom", "bottom"), | |
| ("Diagonal", "diagonal"), | |
| ("Custom", "custom"), | |
| ], | |
| value="none", | |
| elem_classes="radio-group" | |
| ) | |
| light_direction_custom = gr.Textbox( | |
| label="Custom Light Direction", | |
| placeholder="e.g., From 45 degrees above left, Rotating around subject, etc.", | |
| visible=False | |
| ) | |
| with gr.Accordion("⚡ Light Intensity", open=True): | |
| light_intensity = gr.Radio( | |
| choices=[ | |
| ("None", "none"), | |
| ("Soft", "soft"), | |
| ("Medium", "medium"), | |
| ("Strong", "strong"), | |
| ("Custom", "custom"), | |
| ], | |
| value="none", | |
| elem_classes="radio-group" | |
| ) | |
| light_intensity_custom = gr.Textbox( | |
| label="Custom Light Intensity", | |
| placeholder="e.g., Very dim, Blinding bright, Pulsating, etc.", | |
| visible=False | |
| ) | |
| with gr.Accordion("🌍 Illumination Environment", open=False): | |
| illumination_env = gr.Radio( | |
| choices=[ | |
| ("None", "none"), | |
| ("Sunshine from Window", "sunshine_window"), | |
| ("Neon Night, City", "neon_city"), | |
| ("Sci-Fi RGB Glowing, Cyberpunk", "sci_fi_rgb"), | |
| ("Warm Atmosphere, at Home, Bedroom", "warm_bedroom"), | |
| ("Magic Lit", "magic_lit"), | |
| ("Evil, Gothic, in a Cave", "gothic_cave"), | |
| ("Light and Shadow", "light_shadow"), | |
| ("Shadow from Window", "window_shadow"), | |
| ("Soft Studio Lighting", "soft_studio"), | |
| ("Home Atmosphere, Cozy Bedroom", "cozy_bedroom"), | |
| ("Neon, Wong Kar-wai, Warm", "wong_kar_wai"), | |
| ("Moonlight through Curtains", "moonlight_curtains"), | |
| ("Stormy Sky Lighting", "stormy_sky"), | |
| ("Underwater Glow, Deep Sea", "underwater_glow"), | |
| ("Foggy Forest at Dawn", "foggy_forest"), | |
| ("Golden Hour in a Meadow", "meadow_golden"), | |
| ("Rainbow Reflections, Neon", "rainbow_neon"), | |
| ("Apocalyptic, Smoky Atmosphere", "apocalyptic"), | |
| ("Red Glow, Emergency Lights", "emergency_red"), | |
| ("Mystical Glow, Enchanted Forest", "mystical_forest"), | |
| ("Campfire Light", "campfire"), | |
| ("Harsh, Industrial Lighting", "industrial_harsh"), | |
| ("Sunrise in the Mountains", "mountain_sunrise"), | |
| ("Evening Glow in the Desert", "desert_evening"), | |
| ("Moonlight in a Dark Alley", "dark_alley"), | |
| ("Golden Glow at a Fairground", "fairground"), | |
| ("Midnight in the Forest", "forest_midnight"), | |
| ("Purple and Pink Hues at Twilight", "twilight_purple"), | |
| ("Foggy Morning, Muted Light", "foggy_morning"), | |
| ("Candle-lit Room, Rustic Vibe", "rustic_candle"), | |
| ("Fluorescent Office Lighting", "office_fluorescent"), | |
| ("Lightning Flash in Storm", "storm_lightning"), | |
| ("Night, Cozy Warm Light from Fireplace", "fireplace_night"), | |
| ("Ethereal Glow, Magical Forest", "ethereal_magic"), | |
| ("Dusky Evening on a Beach", "beach_dusky"), | |
| ("Afternoon Light Filtering through Trees", "trees_afternoon"), | |
| ("Blue Neon Light, Urban Street", "urban_blue_neon"), | |
| ("Red and Blue Police Lights in Rain", "rain_police"), | |
| ("Aurora Borealis Glow, Arctic Landscape", "aurora_arctic"), | |
| ("Sunrise through Foggy Mountains", "foggy_mountains"), | |
| ("Golden Hour on a City Skyline", "city_skyline"), | |
| ("Mysterious Twilight, Heavy Mist", "twilight_mist"), | |
| ("Early Morning Rays, Forest Clearing", "forest_rays"), | |
| ("Colorful Lantern Light at Festival", "festival_lantern"), | |
| ("Soft Glow through Stained Glass", "stained_glass"), | |
| ("Harsh Spotlight in Dark Room", "dark_spotlight"), | |
| ("Mellow Evening Glow on a Lake", "lake_evening"), | |
| ("Crystal Reflections in a Cave", "cave_crystal"), | |
| ("Vibrant Autumn Lighting in a Forest", "autumn_forest"), | |
| ("Gentle Snowfall at Dusk", "snowfall_dusk"), | |
| ("Hazy Light of a Winter Morning", "winter_hazy"), | |
| ("Rain-soaked Reflections in City Lights", "rain_city"), | |
| ("Golden Sunlight Streaming through Trees", "trees_golden_sun"), | |
| ("Fireflies Lighting up a Summer Night", "fireflies_summer"), | |
| ("Glowing Embers from a Forge", "forge_embers"), | |
| ("Dim Candlelight in a Gothic Castle", "gothic_castle"), | |
| ("Midnight Sky with Bright Starlight", "starlight_midnight"), | |
| ("Warm Sunset in a Rural Village", "rural_sunset"), | |
| ("Flickering Light in a Haunted House", "haunted_flicker"), | |
| ("Desert Sunset with Mirage-like Glow", "desert_mirage"), | |
| ("Golden Beams Piercing through Storm Clouds", "storm_beams"), | |
| ("Custom", "custom"), | |
| ], | |
| value="none", | |
| elem_classes="radio-group" | |
| ) | |
| illumination_env_custom = gr.Textbox( | |
| label="Custom Illumination Environment", | |
| placeholder="e.g., Inside a crystal palace, Underwater volcano, etc.", | |
| visible=False | |
| ) | |
| with gr.Tab("Custom Prompt"): | |
| with gr.Accordion("✍️ Custom Prompt (in any language)", open=False): | |
| prompt = gr.Textbox( | |
| placeholder="Example: Add warm sunset lighting from the right", | |
| lines=3 | |
| ) | |
| with gr.Row(): | |
| reset_btn = gr.Button("🔄 Reset") | |
| run_btn = gr.Button("✨ Generate", variant="primary") | |
| with gr.Accordion("⚙️ Advanced Settings", open=False): | |
| seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0) | |
| randomize_seed = gr.Checkbox(label="Randomize Seed", value=True) | |
| true_guidance_scale = gr.Slider(label="True Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=1.0) | |
| num_inference_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=40, step=1, value=4) | |
| height = gr.Slider(label="Height", minimum=256, maximum=2048, step=8, value=1024) | |
| width = gr.Slider(label="Width", minimum=256, maximum=2048, step=8, value=1024) | |
| with gr.Column(scale=1): | |
| result = gr.Image(label="Output Image", interactive=False) | |
| prompt_preview = gr.Textbox(label="Processed Prompt (in Chinese)", interactive=False) | |
| create_video_button = gr.Button("🎥 Create Video Between Images", variant="secondary", visible=False) | |
| with gr.Group(visible=False) as video_group: | |
| video_output = gr.Video(label="Generated Video", show_download_button=True, autoplay=True) | |
| inputs = [ | |
| image, light_type, light_type_custom, light_direction, light_direction_custom, | |
| light_intensity, light_intensity_custom, illumination_env, illumination_env_custom, | |
| prompt, seed, randomize_seed, true_guidance_scale, num_inference_steps, height, width, prev_output | |
| ] | |
| outputs = [result, seed, prompt_preview] | |
| # Toggle custom textboxes visibility | |
| light_type.change(fn=toggle_custom_textbox, inputs=[light_type], outputs=[light_type_custom], queue=False) | |
| light_direction.change(fn=toggle_custom_textbox, inputs=[light_direction], outputs=[light_direction_custom], queue=False) | |
| light_intensity.change(fn=toggle_custom_textbox, inputs=[light_intensity], outputs=[light_intensity_custom], queue=False) | |
| illumination_env.change(fn=toggle_custom_textbox, inputs=[illumination_env], outputs=[illumination_env_custom], queue=False) | |
| # Reset behavior | |
| reset_btn.click( | |
| fn=reset_all, | |
| inputs=None, | |
| outputs=[light_type, light_type_custom, light_direction, light_direction_custom, | |
| light_intensity, light_intensity_custom, illumination_env, illumination_env_custom, | |
| prompt, is_reset], | |
| queue=False | |
| ).then(fn=end_reset, inputs=None, outputs=[is_reset], queue=False) | |
| # Manual generation with video button visibility control | |
| def infer_and_show_video_button(*args): | |
| result_img, result_seed, result_prompt = infer_relight(*args) | |
| # Show video button if we have both input and output images | |
| show_button = args[0] is not None and result_img is not None | |
| return result_img, result_seed, result_prompt, gr.update(visible=show_button) | |
| run_event = run_btn.click( | |
| fn=infer_and_show_video_button, | |
| inputs=inputs, | |
| outputs=outputs + [create_video_button] | |
| ) | |
| # Video creation | |
| create_video_button.click( | |
| fn=lambda: gr.update(visible=True), | |
| outputs=[video_group], | |
| api_name=False | |
| ).then( | |
| fn=create_video_between_images, | |
| inputs=[image, result, prompt_preview], | |
| outputs=[video_output], | |
| api_name=False | |
| ) | |
| # Examples | |
| gr.Examples( | |
| examples=[ | |
| ["harold.png", "dramatic", "", "side", "", "soft", "", "none", "", "", 0, True, 1.0, 4, 672, 1024], | |
| ["distracted.png", "golden_hour", "", "side", "", "strong", "", "none", "", "", 0, True, 1.0, 4, 640, 1024], | |
| ["disaster.jpg", "moonlight", "", "front", "", "medium", "", "neon_city", "", "", 0, True, 1.0, 4, 640, 1024], | |
| ], | |
| inputs=[image, light_type, light_type_custom, light_direction, light_direction_custom, | |
| light_intensity, light_intensity_custom, illumination_env, illumination_env_custom, | |
| prompt, seed, randomize_seed, true_guidance_scale, num_inference_steps, height, width], | |
| outputs=outputs, | |
| fn=infer_relight, | |
| cache_examples="lazy", | |
| elem_id="examples" | |
| ) | |
| # Image upload triggers dimension update and control reset | |
| image.upload( | |
| fn=update_dimensions_on_upload, | |
| inputs=[image], | |
| outputs=[width, height] | |
| ).then( | |
| fn=reset_all, | |
| inputs=None, | |
| outputs=[light_type, light_type_custom, light_direction, light_direction_custom, | |
| light_intensity, light_intensity_custom, illumination_env, illumination_env_custom, | |
| prompt, is_reset], | |
| queue=False | |
| ).then( | |
| fn=end_reset, | |
| inputs=None, | |
| outputs=[is_reset], | |
| queue=False | |
| ) | |
| # Live updates - only trigger on non-custom radio selections | |
| def maybe_infer(is_reset, progress=gr.Progress(track_tqdm=True), *args): | |
| if is_reset: | |
| return gr.update(), gr.update(), gr.update(), gr.update() | |
| else: | |
| result_img, result_seed, result_prompt = infer_relight(*args) | |
| # Show video button if we have both input and output | |
| show_button = args[0] is not None and result_img is not None | |
| return result_img, result_seed, result_prompt, gr.update(visible=show_button) | |
| control_inputs = [ | |
| image, light_type, light_type_custom, light_direction, light_direction_custom, | |
| light_intensity, light_intensity_custom, illumination_env, illumination_env_custom, | |
| prompt, seed, randomize_seed, true_guidance_scale, num_inference_steps, height, width, prev_output | |
| ] | |
| control_inputs_with_flag = [is_reset] + control_inputs | |
| # Only trigger live updates when selecting non-custom options | |
| def should_trigger_infer(choice): | |
| return choice != "custom" | |
| for control in [light_type, light_direction, light_intensity, illumination_env]: | |
| control.input( | |
| fn=lambda choice, is_reset_val, *args, progress=gr.Progress(track_tqdm=True): | |
| maybe_infer(is_reset_val, progress, *args) if should_trigger_infer(choice) else (gr.update(), gr.update(), gr.update(), gr.update()), | |
| inputs=[control, is_reset] + control_inputs, # Pass control separately, then is_reset, then the rest | |
| outputs=outputs + [create_video_button] | |
| ) | |
| run_event.then(lambda img, *_: img, inputs=[result], outputs=[prev_output]) | |
| demo.launch() |