multimodalart's picture
Update app.py
22ab819 verified
import gradio as gr
import numpy as np
import random
import torch
import spaces
from PIL import Image
from diffusers import FlowMatchEulerDiscreteScheduler
from optimization import optimize_pipeline_
from qwenimage.pipeline_qwenimage_edit_plus import QwenImageEditPlusPipeline
from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel
from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3
import math
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
from PIL import Image
import os
import gradio as gr
from gradio_client import Client, handle_file
import tempfile
from huggingface_hub import InferenceClient
# --- Model Loading ---
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
scheduler_config = {
"base_image_seq_len": 256,
"base_shift": math.log(3),
"invert_sigmas": False,
"max_image_seq_len": 8192,
"max_shift": math.log(3),
"num_train_timesteps": 1000,
"shift": 1.0,
"shift_terminal": None,
"stochastic_sampling": False,
"time_shift_type": "exponential",
"use_beta_sigmas": False,
"use_dynamic_shifting": True,
"use_exponential_sigmas": False,
"use_karras_sigmas": False,
}
scheduler = FlowMatchEulerDiscreteScheduler.from_config(scheduler_config)
pipe = QwenImageEditPlusPipeline.from_pretrained("Qwen/Qwen-Image-Edit-2509", scheduler=scheduler, torch_dtype=dtype)
# Load the relight LoRA
pipe.load_lora_weights("dx8152/Qwen-Image-Edit-2509-Relight",
weight_name="Qwen-Edit-Relight.safetensors", adapter_name="relight")
pipe.load_lora_weights("lightx2v/Qwen-Image-Lightning",
weight_name="Qwen-Image-Lightning-4steps-V2.0-bf16.safetensors", adapter_name="lightning")
pipe.set_adapters(["relight", "lightning"], adapter_weights=[1., 1.])
pipe.fuse_lora(adapter_names=["relight", "lightning"], lora_scale=1)
pipe.unload_lora_weights()
pipe.transformer.__class__ = QwenImageTransformer2DModel
pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())
pipe.to(device)
optimize_pipeline_(pipe, image=[Image.new("RGB", (1024, 1024)), Image.new("RGB", (1024, 1024))], prompt="prompt")
MAX_SEED = np.iinfo(np.int32).max
translation_client = InferenceClient(
api_key=os.environ.get("HF_TOKEN"),
)
def translate_to_chinese(text: str) -> str:
"""Translate any language text to Chinese using Qwen API."""
if not text or not text.strip():
return ""
# Check if text is already primarily Chinese
chinese_chars = sum(1 for char in text if '\u4e00' <= char <= '\u9fff')
if chinese_chars / max(len(text), 1) > 0.5:
# Already mostly Chinese, return as is
return text
try:
completion = translation_client.chat.completions.create(
model="Qwen/Qwen3-Next-80B-A3B-Instruct:novita",
messages=[
{
"role": "system",
"content": "You are a professional translator. Translate the user's text to Chinese. Only output the translated text, nothing else."
},
{
"role": "user",
"content": f"Translate this to Chinese: {text}"
}
],
max_tokens=500,
)
translated = completion.choices[0].message.content.strip()
print(f"Translated '{text}' to '{translated}'")
return translated
except Exception as e:
print(f"Translation error: {e}")
# Fallback to original text if translation fails
return text
def _generate_video_segment(input_image_path: str, output_image_path: str, prompt: str, request: gr.Request) -> str:
"""Generates a single video segment using the external service."""
x_ip_token = request.headers['x-ip-token']
video_client = Client("multimodalart/wan-2-2-first-last-frame", headers={"x-ip-token": x_ip_token})
result = video_client.predict(
start_image_pil=handle_file(input_image_path),
end_image_pil=handle_file(output_image_path),
prompt=prompt, api_name="/generate_video",
)
return result[0]["video"]
def build_relight_prompt(light_type, light_type_custom, light_direction, light_direction_custom,
light_intensity, light_intensity_custom, illumination_env,
illumination_env_custom, prompt):
"""Build the relighting prompt based on user selections - Qwen style."""
# Priority 1: User's prompt (translated to Chinese if needed)
if prompt and prompt.strip():
translated = translate_to_chinese(prompt)
# Add trigger word if not already present
if "重新照明" not in translated:
return f"重新照明,{translated}"
return translated
# Priority 2: Build from controls
prompt_parts = ["重新照明"]
# Light type descriptions (expanded from IC-Light style but in Chinese)
light_descriptions = {
"none": "",
"soft_window": "窗帘透光(柔和漫射)",
"golden_hour": "金色黄昏的温暖光线",
"studio": "专业摄影棚的均匀光线",
"dramatic": "戏剧性的高对比度光线",
"natural": "自然日光",
"neon": "霓虹灯光效果",
"candlelight": "烛光的温暖氛围",
"moonlight": "月光的冷色调",
"sunrise": "日出的柔和光线",
"sunset_sea": "海面日落光线",
"overcast": "阴天的柔和漫射光",
"harsh_sun": "强烈的正午阳光",
"twilight": "黄昏时分的神秘光线",
"aurora": "极光般的多彩光线",
"firelight": "篝火的跳动光线",
"lightning": "闪电的瞬间强光",
"underwater": "水下的柔和蓝光",
"foggy": "雾气中的柔和扩散光",
"magic": "魔法般的神秘光芒",
"cyberpunk": "赛博朋克风格的RGB霓虹光",
"warm_home": "家庭温馨的暖色光",
"cold_industrial": "冷酷的工业照明",
"spotlight": "聚光灯效果",
"rim_light": "边缘光效果",
}
# Direction descriptions (from IC-Light)
direction_descriptions = {
"none": "",
"front": "正面照射",
"side": "侧面照射",
"left": "左侧照射",
"right": "右侧照射",
"back": "背后照射(逆光)",
"top": "上方照射",
"bottom": "下方照射",
"diagonal": "对角线照射",
}
# Intensity descriptions
intensity_descriptions = {
"none": "",
"soft": "柔和强度",
"medium": "中等强度",
"strong": "强烈强度",
}
# Illumination environments (from IC-Light vary, translated)
illumination_envs = {
"none": "",
"sunshine_window": "阳光从窗户透入",
"neon_city": "霓虹夜景,城市灯光",
"sci_fi_rgb": "科幻RGB发光,赛博朋克风格",
"warm_bedroom": "温暖氛围,家中,卧室",
"magic_lit": "魔法照明",
"gothic_cave": "邪恶哥特风格,洞穴中",
"light_shadow": "光影交错",
"window_shadow": "窗户投影",
"soft_studio": "柔和摄影棚灯光",
"cozy_bedroom": "家庭氛围,温馨卧室照明",
"wong_kar_wai": "王家卫风格霓虹灯,温暖色调",
"moonlight_curtains": "月光透过窗帘",
"stormy_sky": "暴风雨天空照明",
"underwater_glow": "水下发光,深海",
"foggy_forest": "雾中森林黎明",
"meadow_golden": "草地上的黄金时刻",
"rainbow_neon": "彩虹反射,霓虹",
"apocalyptic": "末日烟雾氛围",
"emergency_red": "红色紧急灯光",
"mystical_forest": "神秘发光,魔法森林",
"campfire": "篝火光芒",
"industrial_harsh": "严酷工业照明",
"mountain_sunrise": "山中日出",
"desert_evening": "沙漠黄昏",
"dark_alley": "黑暗小巷的月光",
"fairground": "游乐场的金色光芒",
"forest_midnight": "森林深夜",
"twilight_purple": "黄昏的紫粉色调",
"foggy_morning": "雾蒙蒙的早晨",
"rustic_candle": "乡村风格烛光",
"office_fluorescent": "办公室荧光灯",
"storm_lightning": "暴风雨中的闪电",
"fireplace_night": "夜晚壁炉的温暖光芒",
"ethereal_magic": "空灵发光,魔法森林",
"beach_dusky": "海滩的黄昏",
"trees_afternoon": "树林中的午后光线",
"urban_blue_neon": "蓝色霓虹灯,城市街道",
"rain_police": "雨中红蓝警灯",
"aurora_arctic": "极光,北极景观",
"foggy_mountains": "雾中山峦日出",
"city_skyline": "城市天际线的黄金时刻",
"twilight_mist": "神秘黄昏,浓雾",
"forest_rays": "森林空地的清晨光线",
"festival_lantern": "节日多彩灯笼光",
"stained_glass": "彩色玻璃的柔和光芒",
"dark_spotlight": "黑暗房间的强烈聚光",
"lake_evening": "湖面柔和的黄昏光",
"cave_crystal": "洞穴水晶反射",
"autumn_forest": "秋林中的鲜艳光线",
"snowfall_dusk": "黄昏轻柔降雪",
"winter_hazy": "冬日清晨的朦胧光",
"rain_city": "雨中城市灯光倒影",
"trees_golden_sun": "金色阳光穿过树林",
"fireflies_summer": "萤火虫点亮夏夜",
"forge_embers": "锻造炉的发光余烬",
"gothic_castle": "哥特城堡的昏暗烛光",
"starlight_midnight": "午夜明亮星光",
"rural_sunset": "乡村的温暖日落",
"haunted_flicker": "闹鬼房屋的闪烁灯光",
"desert_mirage": "沙漠日落海市蜃楼般的光",
"storm_beams": "风暴云中穿透的金色光束",
}
# Build the prompt - Qwen style (comma-separated, Chinese)
# Handle custom light type
if light_type == "custom" and light_type_custom and light_type_custom.strip():
prompt_parts.append(translate_to_chinese(light_type_custom))
elif light_type != "none":
prompt_parts.append(light_descriptions.get(light_type, ""))
# Handle custom illumination environment
if illumination_env == "custom" and illumination_env_custom and illumination_env_custom.strip():
prompt_parts.append(translate_to_chinese(illumination_env_custom))
elif illumination_env != "none":
prompt_parts.append(illumination_envs.get(illumination_env, ""))
# Handle custom light direction
if light_direction == "custom" and light_direction_custom and light_direction_custom.strip():
prompt_parts.append(translate_to_chinese(light_direction_custom))
elif light_direction != "none":
prompt_parts.append(direction_descriptions.get(light_direction, ""))
# Handle custom light intensity
if light_intensity == "custom" and light_intensity_custom and light_intensity_custom.strip():
prompt_parts.append(translate_to_chinese(light_intensity_custom))
elif light_intensity != "none":
prompt_parts.append(intensity_descriptions.get(light_intensity, ""))
final_prompt = ",".join([p for p in prompt_parts if p])
# Add instruction if we have settings
if len(prompt_parts) > 1:
final_prompt += ",对图片进行重新照明"
return final_prompt if len(prompt_parts) > 1 else "重新照明,使用自然光线对图片进行重新照明"
@spaces.GPU
def infer_relight(
image,
light_type,
light_type_custom,
light_direction,
light_direction_custom,
light_intensity,
light_intensity_custom,
illumination_env,
illumination_env_custom,
prompt,
seed,
randomize_seed,
true_guidance_scale,
num_inference_steps,
height,
width,
prev_output = None,
progress=gr.Progress(track_tqdm=True)
):
final_prompt = build_relight_prompt(light_type, light_type_custom, light_direction,
light_direction_custom, light_intensity,
light_intensity_custom, illumination_env,
illumination_env_custom, prompt)
print(f"Generated Prompt: {final_prompt}")
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
# Choose input image (prefer uploaded, else last output)
pil_images = []
if image is not None:
if isinstance(image, Image.Image):
pil_images.append(image.convert("RGB"))
elif hasattr(image, "name"):
pil_images.append(Image.open(image.name).convert("RGB"))
elif prev_output:
pil_images.append(prev_output.convert("RGB"))
if len(pil_images) == 0:
raise gr.Error("Please upload an image first.")
result = pipe(
image=pil_images,
prompt=final_prompt,
height=height if height != 0 else None,
width=width if width != 0 else None,
num_inference_steps=num_inference_steps,
generator=generator,
true_cfg_scale=true_guidance_scale,
num_images_per_prompt=1,
).images[0]
return result, seed, final_prompt
def create_video_between_images(input_image, output_image, prompt: str, request: gr.Request) -> str:
"""Create a video between the input and output images."""
if input_image is None or output_image is None:
raise gr.Error("Both input and output images are required to create a video.")
try:
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmp:
input_image.save(tmp.name)
input_image_path = tmp.name
output_pil = Image.fromarray(output_image.astype('uint8'))
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmp:
output_pil.save(tmp.name)
output_image_path = tmp.name
video_path = _generate_video_segment(
input_image_path,
output_image_path,
prompt if prompt else "Relighting transformation",
request
)
return video_path
except Exception as e:
raise gr.Error(f"Video generation failed: {e}")
# --- UI ---
css = '''
#col-container { max-width: 1200px; margin: 0 auto; }
.dark .progress-text{color: white !important}
#examples{max-width: 1200px; margin: 0 auto; }
.radio-group {display: grid; grid-template-columns: repeat(auto-fit, minmax(200px, 1fr)); gap: 8px;}
.radio-group [data-testid="block-info"] { display: none !important }
'''
def reset_all():
return ["none", "", "none", "", "none", "", "none", "", "", False]
def end_reset():
return False
def update_dimensions_on_upload(image):
if image is None:
return 1024, 1024
original_width, original_height = image.size
if original_width > original_height:
new_width = 1024
aspect_ratio = original_height / original_width
new_height = int(new_width * aspect_ratio)
else:
new_height = 1024
aspect_ratio = original_width / original_height
new_width = int(new_height * aspect_ratio)
# Ensure dimensions are multiples of 8
new_width = (new_width // 8) * 8
new_height = (new_height // 8) * 8
return new_width, new_height
def toggle_custom_textbox(choice):
"""Show textbox when Custom is selected"""
return gr.update(visible=(choice == "custom"))
with gr.Blocks(theme=gr.themes.Citrus(), css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("## 💡 Qwen Image Edit — Relighting Control")
gr.Markdown("""
Qwen Image Edit 2509 for Image Relighting ✨
Using [dx8152's Qwen-Image-Edit-2509-Relight LoRA](https://huggingface.co/dx8152/Qwen-Image-Edit-2509-Relight) and [lightx2v/Qwen-Image-Lightning](https://huggingface.co/lightx2v/Qwen-Image-Lightning) for 4-step inference 💨
"""
)
with gr.Row():
with gr.Column(scale=1):
image = gr.Image(label="Input Image", type="pil")
prev_output = gr.Image(value=None, visible=False)
is_reset = gr.Checkbox(value=False, visible=False)
with gr.Tab("Compose Prompt"):
with gr.Accordion("💡 Light Type", open=True):
light_type = gr.Radio(
choices=[
("None", "none"),
("Soft Window Light", "soft_window"),
("Golden Hour", "golden_hour"),
("Studio Lighting", "studio"),
("Dramatic", "dramatic"),
("Natural Daylight", "natural"),
("Neon", "neon"),
("Candlelight", "candlelight"),
("Moonlight", "moonlight"),
("Sunrise", "sunrise"),
("Sunset over Sea", "sunset_sea"),
("Overcast", "overcast"),
("Harsh Sunlight", "harsh_sun"),
("Twilight", "twilight"),
("Aurora", "aurora"),
("Firelight", "firelight"),
("Lightning", "lightning"),
("Underwater", "underwater"),
("Foggy", "foggy"),
("Magic Light", "magic"),
("Cyberpunk", "cyberpunk"),
("Warm Home", "warm_home"),
("Cold Industrial", "cold_industrial"),
("Spotlight", "spotlight"),
("Rim Light", "rim_light"),
("Custom", "custom"),
],
value="none",
elem_classes="radio-group"
)
light_type_custom = gr.Textbox(
label="Custom Light Type",
placeholder="e.g., Bioluminescent glow, Laser light show, etc.",
visible=False
)
with gr.Accordion("🧭 Light Direction", open=True):
light_direction = gr.Radio(
choices=[
("None", "none"),
("Front", "front"),
("Side", "side"),
("Left", "left"),
("Right", "right"),
("Back (Backlight)", "back"),
("Top", "top"),
("Bottom", "bottom"),
("Diagonal", "diagonal"),
("Custom", "custom"),
],
value="none",
elem_classes="radio-group"
)
light_direction_custom = gr.Textbox(
label="Custom Light Direction",
placeholder="e.g., From 45 degrees above left, Rotating around subject, etc.",
visible=False
)
with gr.Accordion("⚡ Light Intensity", open=True):
light_intensity = gr.Radio(
choices=[
("None", "none"),
("Soft", "soft"),
("Medium", "medium"),
("Strong", "strong"),
("Custom", "custom"),
],
value="none",
elem_classes="radio-group"
)
light_intensity_custom = gr.Textbox(
label="Custom Light Intensity",
placeholder="e.g., Very dim, Blinding bright, Pulsating, etc.",
visible=False
)
with gr.Accordion("🌍 Illumination Environment", open=False):
illumination_env = gr.Radio(
choices=[
("None", "none"),
("Sunshine from Window", "sunshine_window"),
("Neon Night, City", "neon_city"),
("Sci-Fi RGB Glowing, Cyberpunk", "sci_fi_rgb"),
("Warm Atmosphere, at Home, Bedroom", "warm_bedroom"),
("Magic Lit", "magic_lit"),
("Evil, Gothic, in a Cave", "gothic_cave"),
("Light and Shadow", "light_shadow"),
("Shadow from Window", "window_shadow"),
("Soft Studio Lighting", "soft_studio"),
("Home Atmosphere, Cozy Bedroom", "cozy_bedroom"),
("Neon, Wong Kar-wai, Warm", "wong_kar_wai"),
("Moonlight through Curtains", "moonlight_curtains"),
("Stormy Sky Lighting", "stormy_sky"),
("Underwater Glow, Deep Sea", "underwater_glow"),
("Foggy Forest at Dawn", "foggy_forest"),
("Golden Hour in a Meadow", "meadow_golden"),
("Rainbow Reflections, Neon", "rainbow_neon"),
("Apocalyptic, Smoky Atmosphere", "apocalyptic"),
("Red Glow, Emergency Lights", "emergency_red"),
("Mystical Glow, Enchanted Forest", "mystical_forest"),
("Campfire Light", "campfire"),
("Harsh, Industrial Lighting", "industrial_harsh"),
("Sunrise in the Mountains", "mountain_sunrise"),
("Evening Glow in the Desert", "desert_evening"),
("Moonlight in a Dark Alley", "dark_alley"),
("Golden Glow at a Fairground", "fairground"),
("Midnight in the Forest", "forest_midnight"),
("Purple and Pink Hues at Twilight", "twilight_purple"),
("Foggy Morning, Muted Light", "foggy_morning"),
("Candle-lit Room, Rustic Vibe", "rustic_candle"),
("Fluorescent Office Lighting", "office_fluorescent"),
("Lightning Flash in Storm", "storm_lightning"),
("Night, Cozy Warm Light from Fireplace", "fireplace_night"),
("Ethereal Glow, Magical Forest", "ethereal_magic"),
("Dusky Evening on a Beach", "beach_dusky"),
("Afternoon Light Filtering through Trees", "trees_afternoon"),
("Blue Neon Light, Urban Street", "urban_blue_neon"),
("Red and Blue Police Lights in Rain", "rain_police"),
("Aurora Borealis Glow, Arctic Landscape", "aurora_arctic"),
("Sunrise through Foggy Mountains", "foggy_mountains"),
("Golden Hour on a City Skyline", "city_skyline"),
("Mysterious Twilight, Heavy Mist", "twilight_mist"),
("Early Morning Rays, Forest Clearing", "forest_rays"),
("Colorful Lantern Light at Festival", "festival_lantern"),
("Soft Glow through Stained Glass", "stained_glass"),
("Harsh Spotlight in Dark Room", "dark_spotlight"),
("Mellow Evening Glow on a Lake", "lake_evening"),
("Crystal Reflections in a Cave", "cave_crystal"),
("Vibrant Autumn Lighting in a Forest", "autumn_forest"),
("Gentle Snowfall at Dusk", "snowfall_dusk"),
("Hazy Light of a Winter Morning", "winter_hazy"),
("Rain-soaked Reflections in City Lights", "rain_city"),
("Golden Sunlight Streaming through Trees", "trees_golden_sun"),
("Fireflies Lighting up a Summer Night", "fireflies_summer"),
("Glowing Embers from a Forge", "forge_embers"),
("Dim Candlelight in a Gothic Castle", "gothic_castle"),
("Midnight Sky with Bright Starlight", "starlight_midnight"),
("Warm Sunset in a Rural Village", "rural_sunset"),
("Flickering Light in a Haunted House", "haunted_flicker"),
("Desert Sunset with Mirage-like Glow", "desert_mirage"),
("Golden Beams Piercing through Storm Clouds", "storm_beams"),
("Custom", "custom"),
],
value="none",
elem_classes="radio-group"
)
illumination_env_custom = gr.Textbox(
label="Custom Illumination Environment",
placeholder="e.g., Inside a crystal palace, Underwater volcano, etc.",
visible=False
)
with gr.Tab("Custom Prompt"):
with gr.Accordion("✍️ Custom Prompt (in any language)", open=False):
prompt = gr.Textbox(
placeholder="Example: Add warm sunset lighting from the right",
lines=3
)
with gr.Row():
reset_btn = gr.Button("🔄 Reset")
run_btn = gr.Button("✨ Generate", variant="primary")
with gr.Accordion("⚙️ Advanced Settings", open=False):
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
true_guidance_scale = gr.Slider(label="True Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=1.0)
num_inference_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=40, step=1, value=4)
height = gr.Slider(label="Height", minimum=256, maximum=2048, step=8, value=1024)
width = gr.Slider(label="Width", minimum=256, maximum=2048, step=8, value=1024)
with gr.Column(scale=1):
result = gr.Image(label="Output Image", interactive=False)
prompt_preview = gr.Textbox(label="Processed Prompt (in Chinese)", interactive=False)
create_video_button = gr.Button("🎥 Create Video Between Images", variant="secondary", visible=False)
with gr.Group(visible=False) as video_group:
video_output = gr.Video(label="Generated Video", show_download_button=True, autoplay=True)
inputs = [
image, light_type, light_type_custom, light_direction, light_direction_custom,
light_intensity, light_intensity_custom, illumination_env, illumination_env_custom,
prompt, seed, randomize_seed, true_guidance_scale, num_inference_steps, height, width, prev_output
]
outputs = [result, seed, prompt_preview]
# Toggle custom textboxes visibility
light_type.change(fn=toggle_custom_textbox, inputs=[light_type], outputs=[light_type_custom], queue=False)
light_direction.change(fn=toggle_custom_textbox, inputs=[light_direction], outputs=[light_direction_custom], queue=False)
light_intensity.change(fn=toggle_custom_textbox, inputs=[light_intensity], outputs=[light_intensity_custom], queue=False)
illumination_env.change(fn=toggle_custom_textbox, inputs=[illumination_env], outputs=[illumination_env_custom], queue=False)
# Reset behavior
reset_btn.click(
fn=reset_all,
inputs=None,
outputs=[light_type, light_type_custom, light_direction, light_direction_custom,
light_intensity, light_intensity_custom, illumination_env, illumination_env_custom,
prompt, is_reset],
queue=False
).then(fn=end_reset, inputs=None, outputs=[is_reset], queue=False)
# Manual generation with video button visibility control
def infer_and_show_video_button(*args):
result_img, result_seed, result_prompt = infer_relight(*args)
# Show video button if we have both input and output images
show_button = args[0] is not None and result_img is not None
return result_img, result_seed, result_prompt, gr.update(visible=show_button)
run_event = run_btn.click(
fn=infer_and_show_video_button,
inputs=inputs,
outputs=outputs + [create_video_button]
)
# Video creation
create_video_button.click(
fn=lambda: gr.update(visible=True),
outputs=[video_group],
api_name=False
).then(
fn=create_video_between_images,
inputs=[image, result, prompt_preview],
outputs=[video_output],
api_name=False
)
# Examples
gr.Examples(
examples=[
["harold.png", "dramatic", "", "side", "", "soft", "", "none", "", "", 0, True, 1.0, 4, 672, 1024],
["distracted.png", "golden_hour", "", "side", "", "strong", "", "none", "", "", 0, True, 1.0, 4, 640, 1024],
["disaster.jpg", "moonlight", "", "front", "", "medium", "", "neon_city", "", "", 0, True, 1.0, 4, 640, 1024],
],
inputs=[image, light_type, light_type_custom, light_direction, light_direction_custom,
light_intensity, light_intensity_custom, illumination_env, illumination_env_custom,
prompt, seed, randomize_seed, true_guidance_scale, num_inference_steps, height, width],
outputs=outputs,
fn=infer_relight,
cache_examples="lazy",
elem_id="examples"
)
# Image upload triggers dimension update and control reset
image.upload(
fn=update_dimensions_on_upload,
inputs=[image],
outputs=[width, height]
).then(
fn=reset_all,
inputs=None,
outputs=[light_type, light_type_custom, light_direction, light_direction_custom,
light_intensity, light_intensity_custom, illumination_env, illumination_env_custom,
prompt, is_reset],
queue=False
).then(
fn=end_reset,
inputs=None,
outputs=[is_reset],
queue=False
)
# Live updates - only trigger on non-custom radio selections
def maybe_infer(is_reset, progress=gr.Progress(track_tqdm=True), *args):
if is_reset:
return gr.update(), gr.update(), gr.update(), gr.update()
else:
result_img, result_seed, result_prompt = infer_relight(*args)
# Show video button if we have both input and output
show_button = args[0] is not None and result_img is not None
return result_img, result_seed, result_prompt, gr.update(visible=show_button)
control_inputs = [
image, light_type, light_type_custom, light_direction, light_direction_custom,
light_intensity, light_intensity_custom, illumination_env, illumination_env_custom,
prompt, seed, randomize_seed, true_guidance_scale, num_inference_steps, height, width, prev_output
]
control_inputs_with_flag = [is_reset] + control_inputs
# Only trigger live updates when selecting non-custom options
def should_trigger_infer(choice):
return choice != "custom"
for control in [light_type, light_direction, light_intensity, illumination_env]:
control.input(
fn=lambda choice, is_reset_val, *args, progress=gr.Progress(track_tqdm=True):
maybe_infer(is_reset_val, progress, *args) if should_trigger_infer(choice) else (gr.update(), gr.update(), gr.update(), gr.update()),
inputs=[control, is_reset] + control_inputs, # Pass control separately, then is_reset, then the rest
outputs=outputs + [create_video_button]
)
run_event.then(lambda img, *_: img, inputs=[result], outputs=[prev_output])
demo.launch()