File size: 33,578 Bytes
a3f5a50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97a289e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a3ec9b
a3f5a50
 
6a3ec9b
 
efd7824
c8b4e68
efd7824
 
a3f5a50
 
 
 
 
6a3ec9b
a3f5a50
6a3ec9b
a3f5a50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0720854
 
 
932647d
a3f5a50
b0661e2
 
 
a3f5a50
 
 
 
 
b0661e2
a3f5a50
 
932647d
a3f5a50
932647d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3f5a50
 
932647d
a3f5a50
932647d
 
 
 
 
 
 
 
 
a3f5a50
 
 
 
932647d
 
 
 
a3f5a50
 
932647d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0720854
 
 
 
a3f5a50
 
0720854
 
 
 
932647d
 
0720854
 
 
 
a3f5a50
 
0720854
 
 
 
a3f5a50
 
 
 
 
 
932647d
a3f5a50
 
 
 
 
 
 
 
0720854
a3f5a50
0720854
a3f5a50
0720854
932647d
0720854
b0661e2
a3f5a50
 
 
 
 
 
 
 
 
0720854
 
 
 
b0661e2
a3f5a50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3fbf7ac
a3f5a50
 
b0661e2
a3f5a50
 
 
 
 
 
 
 
b0661e2
a3f5a50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
932647d
 
a3f5a50
932647d
 
c820dc0
932647d
a3f5a50
 
3fbf7ac
a3f5a50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0720854
 
 
 
a3f5a50
 
 
 
3bceb05
 
c820dc0
3bceb05
 
a3f5a50
932647d
a3f5a50
 
 
 
0720854
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3f5a50
 
932647d
 
a3f5a50
932647d
a3f5a50
 
 
c820dc0
a3f5a50
 
 
932647d
a3f5a50
0720854
a3f5a50
 
 
 
 
0720854
 
 
a3f5a50
 
 
0720854
 
 
 
 
 
a3f5a50
 
 
 
0720854
 
 
a3f5a50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
932647d
a3f5a50
 
0720854
 
 
a3f5a50
0720854
 
 
a3f5a50
 
 
 
 
 
 
 
 
 
 
 
 
 
0720854
 
 
a3f5a50
 
 
 
 
 
 
 
 
0720854
a3f5a50
 
 
 
 
 
 
 
 
 
0720854
 
 
a3f5a50
 
 
0720854
 
 
 
932647d
0720854
22ab819
 
 
0720854
 
a3f5a50
 
 
932647d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
import gradio as gr
import numpy as np
import random
import torch
import spaces

from PIL import Image
from diffusers import FlowMatchEulerDiscreteScheduler
from optimization import optimize_pipeline_
from qwenimage.pipeline_qwenimage_edit_plus import QwenImageEditPlusPipeline
from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel
from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3

import math
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file

from PIL import Image
import os
import gradio as gr
from gradio_client import Client, handle_file
import tempfile
from huggingface_hub import InferenceClient


# --- Model Loading ---
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"

scheduler_config = {
    "base_image_seq_len": 256,
    "base_shift": math.log(3),
    "invert_sigmas": False,
    "max_image_seq_len": 8192,
    "max_shift": math.log(3),
    "num_train_timesteps": 1000,
    "shift": 1.0,
    "shift_terminal": None,
    "stochastic_sampling": False,
    "time_shift_type": "exponential",
    "use_beta_sigmas": False,
    "use_dynamic_shifting": True,
    "use_exponential_sigmas": False,
    "use_karras_sigmas": False,
}

scheduler = FlowMatchEulerDiscreteScheduler.from_config(scheduler_config)

pipe = QwenImageEditPlusPipeline.from_pretrained("Qwen/Qwen-Image-Edit-2509", scheduler=scheduler, torch_dtype=dtype)

# Load the relight LoRA
pipe.load_lora_weights("dx8152/Qwen-Image-Edit-2509-Relight", 
        weight_name="Qwen-Edit-Relight.safetensors", adapter_name="relight")
pipe.load_lora_weights("lightx2v/Qwen-Image-Lightning",
        weight_name="Qwen-Image-Lightning-4steps-V2.0-bf16.safetensors", adapter_name="lightning")
pipe.set_adapters(["relight", "lightning"], adapter_weights=[1., 1.])
pipe.fuse_lora(adapter_names=["relight", "lightning"], lora_scale=1)
pipe.unload_lora_weights()

pipe.transformer.__class__ = QwenImageTransformer2DModel
pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())

pipe.to(device)

optimize_pipeline_(pipe, image=[Image.new("RGB", (1024, 1024)), Image.new("RGB", (1024, 1024))], prompt="prompt")

MAX_SEED = np.iinfo(np.int32).max

translation_client = InferenceClient(
    api_key=os.environ.get("HF_TOKEN"),
)

def translate_to_chinese(text: str) -> str:
    """Translate any language text to Chinese using Qwen API."""
    if not text or not text.strip():
        return ""
    
    # Check if text is already primarily Chinese
    chinese_chars = sum(1 for char in text if '\u4e00' <= char <= '\u9fff')
    if chinese_chars / max(len(text), 1) > 0.5:
        # Already mostly Chinese, return as is
        return text
    
    try:
        completion = translation_client.chat.completions.create(
            model="Qwen/Qwen3-Next-80B-A3B-Instruct:novita",
            messages=[
                {
                    "role": "system",
                    "content": "You are a professional translator. Translate the user's text to Chinese. Only output the translated text, nothing else."
                },
                {
                    "role": "user",
                    "content": f"Translate this to Chinese: {text}"
                }
            ],
            max_tokens=500,
        )
        
        translated = completion.choices[0].message.content.strip()
        print(f"Translated '{text}' to '{translated}'")
        return translated
    except Exception as e:
        print(f"Translation error: {e}")
        # Fallback to original text if translation fails
        return text

def _generate_video_segment(input_image_path: str, output_image_path: str, prompt: str, request: gr.Request) -> str:
    """Generates a single video segment using the external service."""
    x_ip_token = request.headers['x-ip-token']
    video_client = Client("multimodalart/wan-2-2-first-last-frame", headers={"x-ip-token": x_ip_token})
    result = video_client.predict(
        start_image_pil=handle_file(input_image_path),
        end_image_pil=handle_file(output_image_path),
        prompt=prompt, api_name="/generate_video",
    )
    return result[0]["video"]

def build_relight_prompt(light_type, light_type_custom, light_direction, light_direction_custom, 
                         light_intensity, light_intensity_custom, illumination_env, 
                         illumination_env_custom, prompt):
    """Build the relighting prompt based on user selections - Qwen style."""
    
    # Priority 1: User's prompt (translated to Chinese if needed)
    if prompt and prompt.strip():
        translated = translate_to_chinese(prompt)
        # Add trigger word if not already present
        if "重新照明" not in translated:
            return f"重新照明,{translated}"
        return translated
    
    # Priority 2: Build from controls
    prompt_parts = ["重新照明"]
    
    # Light type descriptions (expanded from IC-Light style but in Chinese)
    light_descriptions = {
        "none": "",
        "soft_window": "窗帘透光(柔和漫射)",
        "golden_hour": "金色黄昏的温暖光线",
        "studio": "专业摄影棚的均匀光线",
        "dramatic": "戏剧性的高对比度光线",
        "natural": "自然日光",
        "neon": "霓虹灯光效果",
        "candlelight": "烛光的温暖氛围",
        "moonlight": "月光的冷色调",
        "sunrise": "日出的柔和光线",
        "sunset_sea": "海面日落光线",
        "overcast": "阴天的柔和漫射光",
        "harsh_sun": "强烈的正午阳光",
        "twilight": "黄昏时分的神秘光线",
        "aurora": "极光般的多彩光线",
        "firelight": "篝火的跳动光线",
        "lightning": "闪电的瞬间强光",
        "underwater": "水下的柔和蓝光",
        "foggy": "雾气中的柔和扩散光",
        "magic": "魔法般的神秘光芒",
        "cyberpunk": "赛博朋克风格的RGB霓虹光",
        "warm_home": "家庭温馨的暖色光",
        "cold_industrial": "冷酷的工业照明",
        "spotlight": "聚光灯效果",
        "rim_light": "边缘光效果",
    }
    
    # Direction descriptions (from IC-Light)
    direction_descriptions = {
        "none": "",
        "front": "正面照射",
        "side": "侧面照射",
        "left": "左侧照射",
        "right": "右侧照射",
        "back": "背后照射(逆光)",
        "top": "上方照射",
        "bottom": "下方照射",
        "diagonal": "对角线照射",
    }
    
    # Intensity descriptions
    intensity_descriptions = {
        "none": "",
        "soft": "柔和强度",
        "medium": "中等强度",
        "strong": "强烈强度",
    }
    
    # Illumination environments (from IC-Light vary, translated)
    illumination_envs = {
        "none": "",
        "sunshine_window": "阳光从窗户透入",
        "neon_city": "霓虹夜景,城市灯光",
        "sci_fi_rgb": "科幻RGB发光,赛博朋克风格",
        "warm_bedroom": "温暖氛围,家中,卧室",
        "magic_lit": "魔法照明",
        "gothic_cave": "邪恶哥特风格,洞穴中",
        "light_shadow": "光影交错",
        "window_shadow": "窗户投影",
        "soft_studio": "柔和摄影棚灯光",
        "cozy_bedroom": "家庭氛围,温馨卧室照明",
        "wong_kar_wai": "王家卫风格霓虹灯,温暖色调",
        "moonlight_curtains": "月光透过窗帘",
        "stormy_sky": "暴风雨天空照明",
        "underwater_glow": "水下发光,深海",
        "foggy_forest": "雾中森林黎明",
        "meadow_golden": "草地上的黄金时刻",
        "rainbow_neon": "彩虹反射,霓虹",
        "apocalyptic": "末日烟雾氛围",
        "emergency_red": "红色紧急灯光",
        "mystical_forest": "神秘发光,魔法森林",
        "campfire": "篝火光芒",
        "industrial_harsh": "严酷工业照明",
        "mountain_sunrise": "山中日出",
        "desert_evening": "沙漠黄昏",
        "dark_alley": "黑暗小巷的月光",
        "fairground": "游乐场的金色光芒",
        "forest_midnight": "森林深夜",
        "twilight_purple": "黄昏的紫粉色调",
        "foggy_morning": "雾蒙蒙的早晨",
        "rustic_candle": "乡村风格烛光",
        "office_fluorescent": "办公室荧光灯",
        "storm_lightning": "暴风雨中的闪电",
        "fireplace_night": "夜晚壁炉的温暖光芒",
        "ethereal_magic": "空灵发光,魔法森林",
        "beach_dusky": "海滩的黄昏",
        "trees_afternoon": "树林中的午后光线",
        "urban_blue_neon": "蓝色霓虹灯,城市街道",
        "rain_police": "雨中红蓝警灯",
        "aurora_arctic": "极光,北极景观",
        "foggy_mountains": "雾中山峦日出",
        "city_skyline": "城市天际线的黄金时刻",
        "twilight_mist": "神秘黄昏,浓雾",
        "forest_rays": "森林空地的清晨光线",
        "festival_lantern": "节日多彩灯笼光",
        "stained_glass": "彩色玻璃的柔和光芒",
        "dark_spotlight": "黑暗房间的强烈聚光",
        "lake_evening": "湖面柔和的黄昏光",
        "cave_crystal": "洞穴水晶反射",
        "autumn_forest": "秋林中的鲜艳光线",
        "snowfall_dusk": "黄昏轻柔降雪",
        "winter_hazy": "冬日清晨的朦胧光",
        "rain_city": "雨中城市灯光倒影",
        "trees_golden_sun": "金色阳光穿过树林",
        "fireflies_summer": "萤火虫点亮夏夜",
        "forge_embers": "锻造炉的发光余烬",
        "gothic_castle": "哥特城堡的昏暗烛光",
        "starlight_midnight": "午夜明亮星光",
        "rural_sunset": "乡村的温暖日落",
        "haunted_flicker": "闹鬼房屋的闪烁灯光",
        "desert_mirage": "沙漠日落海市蜃楼般的光",
        "storm_beams": "风暴云中穿透的金色光束",
    }
    
    # Build the prompt - Qwen style (comma-separated, Chinese)
    # Handle custom light type
    if light_type == "custom" and light_type_custom and light_type_custom.strip():
        prompt_parts.append(translate_to_chinese(light_type_custom))
    elif light_type != "none":
        prompt_parts.append(light_descriptions.get(light_type, ""))
    
    # Handle custom illumination environment
    if illumination_env == "custom" and illumination_env_custom and illumination_env_custom.strip():
        prompt_parts.append(translate_to_chinese(illumination_env_custom))
    elif illumination_env != "none":
        prompt_parts.append(illumination_envs.get(illumination_env, ""))
    
    # Handle custom light direction
    if light_direction == "custom" and light_direction_custom and light_direction_custom.strip():
        prompt_parts.append(translate_to_chinese(light_direction_custom))
    elif light_direction != "none":
        prompt_parts.append(direction_descriptions.get(light_direction, ""))
    
    # Handle custom light intensity
    if light_intensity == "custom" and light_intensity_custom and light_intensity_custom.strip():
        prompt_parts.append(translate_to_chinese(light_intensity_custom))
    elif light_intensity != "none":
        prompt_parts.append(intensity_descriptions.get(light_intensity, ""))
    
    final_prompt = ",".join([p for p in prompt_parts if p])
    
    # Add instruction if we have settings
    if len(prompt_parts) > 1:
        final_prompt += ",对图片进行重新照明"
    
    return final_prompt if len(prompt_parts) > 1 else "重新照明,使用自然光线对图片进行重新照明"


@spaces.GPU
def infer_relight(
    image,
    light_type,
    light_type_custom,
    light_direction,
    light_direction_custom,
    light_intensity,
    light_intensity_custom,
    illumination_env,
    illumination_env_custom,
    prompt,
    seed,
    randomize_seed,
    true_guidance_scale,
    num_inference_steps,
    height,
    width,
    prev_output = None,
    progress=gr.Progress(track_tqdm=True)
):
    final_prompt = build_relight_prompt(light_type, light_type_custom, light_direction, 
                                       light_direction_custom, light_intensity, 
                                       light_intensity_custom, illumination_env, 
                                       illumination_env_custom, prompt)
    print(f"Generated Prompt: {final_prompt}")

    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator(device=device).manual_seed(seed)

    # Choose input image (prefer uploaded, else last output)
    pil_images = []
    if image is not None:
        if isinstance(image, Image.Image):
            pil_images.append(image.convert("RGB"))
        elif hasattr(image, "name"):
            pil_images.append(Image.open(image.name).convert("RGB"))
    elif prev_output:
        pil_images.append(prev_output.convert("RGB"))

    if len(pil_images) == 0:
        raise gr.Error("Please upload an image first.")
        
    result = pipe(
        image=pil_images,
        prompt=final_prompt,
        height=height if height != 0 else None,
        width=width if width != 0 else None,
        num_inference_steps=num_inference_steps,
        generator=generator,
        true_cfg_scale=true_guidance_scale,
        num_images_per_prompt=1,
    ).images[0]

    return result, seed, final_prompt

def create_video_between_images(input_image, output_image, prompt: str, request: gr.Request) -> str:
    """Create a video between the input and output images."""
    if input_image is None or output_image is None:
        raise gr.Error("Both input and output images are required to create a video.")
    
    try:
        
        with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmp:
            input_image.save(tmp.name)
            input_image_path = tmp.name
        
        output_pil = Image.fromarray(output_image.astype('uint8'))
        with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmp:
            output_pil.save(tmp.name)
            output_image_path = tmp.name
            
        video_path = _generate_video_segment(
            input_image_path, 
            output_image_path, 
            prompt if prompt else "Relighting transformation",
            request
        )
        return video_path
    except Exception as e:
        raise gr.Error(f"Video generation failed: {e}")


# --- UI ---
css = '''
#col-container { max-width: 1200px; margin: 0 auto; }
.dark .progress-text{color: white !important}
#examples{max-width: 1200px; margin: 0 auto; }
.radio-group {display: grid; grid-template-columns: repeat(auto-fit, minmax(200px, 1fr)); gap: 8px;}
.radio-group [data-testid="block-info"] { display: none !important }
'''

def reset_all():
    return ["none", "", "none", "", "none", "", "none", "", "", False]

def end_reset():
    return False

def update_dimensions_on_upload(image):
    if image is None:
        return 1024, 1024
    
    original_width, original_height = image.size
    
    if original_width > original_height:
        new_width = 1024
        aspect_ratio = original_height / original_width
        new_height = int(new_width * aspect_ratio)
    else:
        new_height = 1024
        aspect_ratio = original_width / original_height
        new_width = int(new_height * aspect_ratio)
        
    # Ensure dimensions are multiples of 8
    new_width = (new_width // 8) * 8
    new_height = (new_height // 8) * 8
    
    return new_width, new_height

def toggle_custom_textbox(choice):
    """Show textbox when Custom is selected"""
    return gr.update(visible=(choice == "custom"))


with gr.Blocks(theme=gr.themes.Citrus(), css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown("## 💡 Qwen Image Edit — Relighting Control")
        gr.Markdown("""
            Qwen Image Edit 2509 for Image Relighting ✨ 
            Using [dx8152's Qwen-Image-Edit-2509-Relight LoRA](https://huggingface.co/dx8152/Qwen-Image-Edit-2509-Relight) and [lightx2v/Qwen-Image-Lightning](https://huggingface.co/lightx2v/Qwen-Image-Lightning) for 4-step inference 💨
            """
        )
        with gr.Row():
            with gr.Column(scale=1):
                image = gr.Image(label="Input Image", type="pil")
                prev_output = gr.Image(value=None, visible=False)
                is_reset = gr.Checkbox(value=False, visible=False)

                with gr.Tab("Compose Prompt"):
                    with gr.Accordion("💡 Light Type", open=True):
                        light_type = gr.Radio(
                            choices=[
                                ("None", "none"),
                                ("Soft Window Light", "soft_window"),
                                ("Golden Hour", "golden_hour"),
                                ("Studio Lighting", "studio"),
                                ("Dramatic", "dramatic"),
                                ("Natural Daylight", "natural"),
                                ("Neon", "neon"),
                                ("Candlelight", "candlelight"),
                                ("Moonlight", "moonlight"),
                                ("Sunrise", "sunrise"),
                                ("Sunset over Sea", "sunset_sea"),
                                ("Overcast", "overcast"),
                                ("Harsh Sunlight", "harsh_sun"),
                                ("Twilight", "twilight"),
                                ("Aurora", "aurora"),
                                ("Firelight", "firelight"),
                                ("Lightning", "lightning"),
                                ("Underwater", "underwater"),
                                ("Foggy", "foggy"),
                                ("Magic Light", "magic"),
                                ("Cyberpunk", "cyberpunk"),
                                ("Warm Home", "warm_home"),
                                ("Cold Industrial", "cold_industrial"),
                                ("Spotlight", "spotlight"),
                                ("Rim Light", "rim_light"),
                                ("Custom", "custom"),
                            ],
                            value="none",
                            elem_classes="radio-group"
                        )
                        light_type_custom = gr.Textbox(
                            label="Custom Light Type",
                            placeholder="e.g., Bioluminescent glow, Laser light show, etc.",
                            visible=False
                        )
                    
                    with gr.Accordion("🧭 Light Direction", open=True):
                        light_direction = gr.Radio(
                            choices=[
                                ("None", "none"),
                                ("Front", "front"),
                                ("Side", "side"),
                                ("Left", "left"),
                                ("Right", "right"),
                                ("Back (Backlight)", "back"),
                                ("Top", "top"),
                                ("Bottom", "bottom"),
                                ("Diagonal", "diagonal"),
                                ("Custom", "custom"),
                            ],
                            value="none",
                            elem_classes="radio-group"
                        )
                        light_direction_custom = gr.Textbox(
                            label="Custom Light Direction",
                            placeholder="e.g., From 45 degrees above left, Rotating around subject, etc.",
                            visible=False
                        )
                    
                    with gr.Accordion("⚡ Light Intensity", open=True):
                        light_intensity = gr.Radio(
                            choices=[
                                ("None", "none"),
                                ("Soft", "soft"),
                                ("Medium", "medium"),
                                ("Strong", "strong"),
                                ("Custom", "custom"),
                            ],
                            value="none",
                            elem_classes="radio-group"
                        )
                        light_intensity_custom = gr.Textbox(
                            label="Custom Light Intensity",
                            placeholder="e.g., Very dim, Blinding bright, Pulsating, etc.",
                            visible=False
                        )
                    
                    with gr.Accordion("🌍 Illumination Environment", open=False):
                        illumination_env = gr.Radio(
                            choices=[
                                ("None", "none"),
                                ("Sunshine from Window", "sunshine_window"),
                                ("Neon Night, City", "neon_city"),
                                ("Sci-Fi RGB Glowing, Cyberpunk", "sci_fi_rgb"),
                                ("Warm Atmosphere, at Home, Bedroom", "warm_bedroom"),
                                ("Magic Lit", "magic_lit"),
                                ("Evil, Gothic, in a Cave", "gothic_cave"),
                                ("Light and Shadow", "light_shadow"),
                                ("Shadow from Window", "window_shadow"),
                                ("Soft Studio Lighting", "soft_studio"),
                                ("Home Atmosphere, Cozy Bedroom", "cozy_bedroom"),
                                ("Neon, Wong Kar-wai, Warm", "wong_kar_wai"),
                                ("Moonlight through Curtains", "moonlight_curtains"),
                                ("Stormy Sky Lighting", "stormy_sky"),
                                ("Underwater Glow, Deep Sea", "underwater_glow"),
                                ("Foggy Forest at Dawn", "foggy_forest"),
                                ("Golden Hour in a Meadow", "meadow_golden"),
                                ("Rainbow Reflections, Neon", "rainbow_neon"),
                                ("Apocalyptic, Smoky Atmosphere", "apocalyptic"),
                                ("Red Glow, Emergency Lights", "emergency_red"),
                                ("Mystical Glow, Enchanted Forest", "mystical_forest"),
                                ("Campfire Light", "campfire"),
                                ("Harsh, Industrial Lighting", "industrial_harsh"),
                                ("Sunrise in the Mountains", "mountain_sunrise"),
                                ("Evening Glow in the Desert", "desert_evening"),
                                ("Moonlight in a Dark Alley", "dark_alley"),
                                ("Golden Glow at a Fairground", "fairground"),
                                ("Midnight in the Forest", "forest_midnight"),
                                ("Purple and Pink Hues at Twilight", "twilight_purple"),
                                ("Foggy Morning, Muted Light", "foggy_morning"),
                                ("Candle-lit Room, Rustic Vibe", "rustic_candle"),
                                ("Fluorescent Office Lighting", "office_fluorescent"),
                                ("Lightning Flash in Storm", "storm_lightning"),
                                ("Night, Cozy Warm Light from Fireplace", "fireplace_night"),
                                ("Ethereal Glow, Magical Forest", "ethereal_magic"),
                                ("Dusky Evening on a Beach", "beach_dusky"),
                                ("Afternoon Light Filtering through Trees", "trees_afternoon"),
                                ("Blue Neon Light, Urban Street", "urban_blue_neon"),
                                ("Red and Blue Police Lights in Rain", "rain_police"),
                                ("Aurora Borealis Glow, Arctic Landscape", "aurora_arctic"),
                                ("Sunrise through Foggy Mountains", "foggy_mountains"),
                                ("Golden Hour on a City Skyline", "city_skyline"),
                                ("Mysterious Twilight, Heavy Mist", "twilight_mist"),
                                ("Early Morning Rays, Forest Clearing", "forest_rays"),
                                ("Colorful Lantern Light at Festival", "festival_lantern"),
                                ("Soft Glow through Stained Glass", "stained_glass"),
                                ("Harsh Spotlight in Dark Room", "dark_spotlight"),
                                ("Mellow Evening Glow on a Lake", "lake_evening"),
                                ("Crystal Reflections in a Cave", "cave_crystal"),
                                ("Vibrant Autumn Lighting in a Forest", "autumn_forest"),
                                ("Gentle Snowfall at Dusk", "snowfall_dusk"),
                                ("Hazy Light of a Winter Morning", "winter_hazy"),
                                ("Rain-soaked Reflections in City Lights", "rain_city"),
                                ("Golden Sunlight Streaming through Trees", "trees_golden_sun"),
                                ("Fireflies Lighting up a Summer Night", "fireflies_summer"),
                                ("Glowing Embers from a Forge", "forge_embers"),
                                ("Dim Candlelight in a Gothic Castle", "gothic_castle"),
                                ("Midnight Sky with Bright Starlight", "starlight_midnight"),
                                ("Warm Sunset in a Rural Village", "rural_sunset"),
                                ("Flickering Light in a Haunted House", "haunted_flicker"),
                                ("Desert Sunset with Mirage-like Glow", "desert_mirage"),
                                ("Golden Beams Piercing through Storm Clouds", "storm_beams"),
                                ("Custom", "custom"),
                            ],
                            value="none",
                            elem_classes="radio-group"
                        )
                        illumination_env_custom = gr.Textbox(
                            label="Custom Illumination Environment",
                            placeholder="e.g., Inside a crystal palace, Underwater volcano, etc.",
                            visible=False
                        )
                        
                with gr.Tab("Custom Prompt"):
                    with gr.Accordion("✍️ Custom Prompt (in any language)", open=False):
                        prompt = gr.Textbox(
                            placeholder="Example: Add warm sunset lighting from the right",
                            lines=3
                        )
                
                with gr.Row():
                    reset_btn = gr.Button("🔄 Reset")
                    run_btn = gr.Button("✨ Generate", variant="primary")

                with gr.Accordion("⚙️ Advanced Settings", open=False):
                    seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
                    randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
                    true_guidance_scale = gr.Slider(label="True Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=1.0)
                    num_inference_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=40, step=1, value=4)
                    height = gr.Slider(label="Height", minimum=256, maximum=2048, step=8, value=1024)
                    width = gr.Slider(label="Width", minimum=256, maximum=2048, step=8, value=1024)

            with gr.Column(scale=1):
                result = gr.Image(label="Output Image", interactive=False)
                prompt_preview = gr.Textbox(label="Processed Prompt (in Chinese)", interactive=False)
                create_video_button = gr.Button("🎥 Create Video Between Images", variant="secondary", visible=False)
                with gr.Group(visible=False) as video_group:
                    video_output = gr.Video(label="Generated Video", show_download_button=True, autoplay=True)
                    
    inputs = [
        image, light_type, light_type_custom, light_direction, light_direction_custom, 
        light_intensity, light_intensity_custom, illumination_env, illumination_env_custom, 
        prompt, seed, randomize_seed, true_guidance_scale, num_inference_steps, height, width, prev_output
    ]
    outputs = [result, seed, prompt_preview]

    # Toggle custom textboxes visibility
    light_type.change(fn=toggle_custom_textbox, inputs=[light_type], outputs=[light_type_custom], queue=False)
    light_direction.change(fn=toggle_custom_textbox, inputs=[light_direction], outputs=[light_direction_custom], queue=False)
    light_intensity.change(fn=toggle_custom_textbox, inputs=[light_intensity], outputs=[light_intensity_custom], queue=False)
    illumination_env.change(fn=toggle_custom_textbox, inputs=[illumination_env], outputs=[illumination_env_custom], queue=False)

    # Reset behavior
    reset_btn.click(
        fn=reset_all,
        inputs=None,
        outputs=[light_type, light_type_custom, light_direction, light_direction_custom, 
                light_intensity, light_intensity_custom, illumination_env, illumination_env_custom, 
                prompt, is_reset],
        queue=False
    ).then(fn=end_reset, inputs=None, outputs=[is_reset], queue=False)

    # Manual generation with video button visibility control
    def infer_and_show_video_button(*args):
        result_img, result_seed, result_prompt = infer_relight(*args)
        # Show video button if we have both input and output images
        show_button = args[0] is not None and result_img is not None
        return result_img, result_seed, result_prompt, gr.update(visible=show_button)
    
    run_event = run_btn.click(
        fn=infer_and_show_video_button, 
        inputs=inputs, 
        outputs=outputs + [create_video_button]
    )

    # Video creation
    create_video_button.click(
        fn=lambda: gr.update(visible=True), 
        outputs=[video_group],
        api_name=False
    ).then(
        fn=create_video_between_images,
        inputs=[image, result, prompt_preview],
        outputs=[video_output],
        api_name=False
    )

    # Examples
    gr.Examples(
        examples=[
            ["harold.png", "dramatic", "", "side", "", "soft", "", "none", "", "", 0, True, 1.0, 4, 672, 1024],
            ["distracted.png", "golden_hour", "", "side", "", "strong", "", "none", "", "", 0, True, 1.0, 4, 640, 1024],
            ["disaster.jpg", "moonlight", "", "front", "", "medium", "", "neon_city", "", "", 0, True, 1.0, 4, 640, 1024],
        ],
        inputs=[image, light_type, light_type_custom, light_direction, light_direction_custom, 
                light_intensity, light_intensity_custom, illumination_env, illumination_env_custom, 
                prompt, seed, randomize_seed, true_guidance_scale, num_inference_steps, height, width],
        outputs=outputs,
        fn=infer_relight,
        cache_examples="lazy",
        elem_id="examples"
    )
    
    # Image upload triggers dimension update and control reset
    image.upload(
        fn=update_dimensions_on_upload,
        inputs=[image],
        outputs=[width, height]
    ).then(
        fn=reset_all,
        inputs=None,
        outputs=[light_type, light_type_custom, light_direction, light_direction_custom, 
                light_intensity, light_intensity_custom, illumination_env, illumination_env_custom, 
                prompt, is_reset],
        queue=False
    ).then(
        fn=end_reset, 
        inputs=None, 
        outputs=[is_reset], 
        queue=False
    )


    # Live updates - only trigger on non-custom radio selections
    def maybe_infer(is_reset, progress=gr.Progress(track_tqdm=True), *args):
        if is_reset:
            return gr.update(), gr.update(), gr.update(), gr.update()
        else:
            result_img, result_seed, result_prompt = infer_relight(*args)
            # Show video button if we have both input and output
            show_button = args[0] is not None and result_img is not None
            return result_img, result_seed, result_prompt, gr.update(visible=show_button)

    control_inputs = [
        image, light_type, light_type_custom, light_direction, light_direction_custom, 
        light_intensity, light_intensity_custom, illumination_env, illumination_env_custom, 
        prompt, seed, randomize_seed, true_guidance_scale, num_inference_steps, height, width, prev_output
    ]
    control_inputs_with_flag = [is_reset] + control_inputs

    # Only trigger live updates when selecting non-custom options
    def should_trigger_infer(choice):
        return choice != "custom"
    
    for control in [light_type, light_direction, light_intensity, illumination_env]:
        control.input(
            fn=lambda choice, is_reset_val, *args, progress=gr.Progress(track_tqdm=True): 
                maybe_infer(is_reset_val, progress, *args) if should_trigger_infer(choice) else (gr.update(), gr.update(), gr.update(), gr.update()),
            inputs=[control, is_reset] + control_inputs,  # Pass control separately, then is_reset, then the rest
            outputs=outputs + [create_video_button]
        )
    
    run_event.then(lambda img, *_: img, inputs=[result], outputs=[prev_output])

demo.launch()