Spaces:
Running
on
Zero
Running
on
Zero
| import gradio as gr | |
| import numpy as np | |
| import random | |
| import torch | |
| import spaces | |
| from PIL import Image | |
| from diffusers import FlowMatchEulerDiscreteScheduler | |
| from optimization import optimize_pipeline_ | |
| from qwenimage.pipeline_qwenimage_edit_plus import QwenImageEditPlusPipeline | |
| from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel | |
| from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3 | |
| import math | |
| # --- Model Loading --- | |
| dtype = torch.bfloat16 | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| scheduler_config = { | |
| "base_image_seq_len": 256, | |
| "base_shift": math.log(3), | |
| "invert_sigmas": False, | |
| "max_image_seq_len": 8192, | |
| "max_shift": math.log(3), | |
| "num_train_timesteps": 1000, | |
| "shift": 1.0, | |
| "shift_terminal": None, | |
| "stochastic_sampling": False, | |
| "time_shift_type": "exponential", | |
| "use_beta_sigmas": False, | |
| "use_dynamic_shifting": True, | |
| "use_exponential_sigmas": False, | |
| "use_karras_sigmas": False, | |
| } | |
| scheduler = FlowMatchEulerDiscreteScheduler.from_config(scheduler_config) | |
| pipe = QwenImageEditPlusPipeline.from_pretrained("Qwen/Qwen-Image-Edit-2509", scheduler=scheduler, torch_dtype=dtype) | |
| # Load the texture LoRA | |
| pipe.load_lora_weights("tarn59/apply_texture_qwen_image_edit_2509", | |
| weight_name="apply_texture_qwen_image_edit_2509.safetensors", adapter_name="texture") | |
| pipe.load_lora_weights("lightx2v/Qwen-Image-Lightning", | |
| weight_name="Qwen-Image-Lightning-4steps-V2.0-bf16.safetensors", adapter_name="lightning") | |
| pipe.set_adapters(["texture", "lightning"], adapter_weights=[1., 1.]) | |
| pipe.fuse_lora(adapter_names=["texture", "lightning"], lora_scale=1) | |
| pipe.unload_lora_weights() | |
| pipe.transformer.__class__ = QwenImageTransformer2DModel | |
| pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3()) | |
| pipe.to(device) | |
| optimize_pipeline_(pipe, image=[Image.new("RGB", (1024, 1024)), Image.new("RGB", (1024, 1024))], prompt="prompt") | |
| MAX_SEED = np.iinfo(np.int32).max | |
| def calculate_dimensions(image): | |
| """Calculate output dimensions based on content image, keeping largest side at 1024.""" | |
| if image is None: | |
| return 1024, 1024 | |
| original_width, original_height = image.size | |
| if original_width > original_height: | |
| new_width = 1024 | |
| aspect_ratio = original_height / original_width | |
| new_height = int(new_width * aspect_ratio) | |
| else: | |
| new_height = 1024 | |
| aspect_ratio = original_width / original_height | |
| new_width = int(new_height * aspect_ratio) | |
| # Ensure dimensions are multiples of 8 | |
| new_width = (new_width // 8) * 8 | |
| new_height = (new_height // 8) * 8 | |
| return new_width, new_height | |
| def apply_texture( | |
| content_image, | |
| texture_image, | |
| prompt, | |
| seed=42, | |
| randomize_seed=False, | |
| true_guidance_scale=False, | |
| num_inference_steps=4, | |
| progress=gr.Progress(track_tqdm=True) | |
| ): | |
| if content_image is None: | |
| raise gr.Error("Please upload a content image.") | |
| if texture_image is None: | |
| raise gr.Error("Please upload a texture image.") | |
| if not prompt or not prompt.strip(): | |
| raise gr.Error("Please provide a description.") | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| # Calculate dimensions based on content image | |
| width, height = calculate_dimensions(content_image) | |
| # Prepare images | |
| content_pil = content_image.convert("RGB") if isinstance(content_image, Image.Image) else Image.open(content_image.name).convert("RGB") | |
| texture_pil = texture_image.convert("RGB") if isinstance(texture_image, Image.Image) else Image.open(texture_image.name).convert("RGB") | |
| pil_images = [content_pil, texture_pil] | |
| result = pipe( | |
| image=pil_images, | |
| prompt=prompt, | |
| height=height, | |
| width=width, | |
| num_inference_steps=num_inference_steps, | |
| generator=generator, | |
| true_cfg_scale=true_guidance_scale, | |
| num_images_per_prompt=1, | |
| ).images[0] | |
| return result, seed | |
| # --- UI --- | |
| css = ''' | |
| #col-container { max-width: 800px; margin: 0 auto; } | |
| .dark .progress-text{color: white !important} | |
| #examples{max-width: 800px; margin: 0 auto; } | |
| ''' | |
| with gr.Blocks(theme=gr.themes.Citrus(), css=css) as demo: | |
| with gr.Column(elem_id="col-container"): | |
| gr.Markdown("# Apply Texture — Qwen Image Edit") | |
| gr.Markdown(""" | |
| Using [tarn59's Apply-Texture-Qwen-Image-Edit-2509 LoRA](https://huggingface.co/tarn59/apply_texture_qwen_image_edit_2509) | |
| and [lightx2v/Qwen-Image-Lightning](https://huggingface.co/lightx2v/Qwen-Image-Lightning) for 4-step inference 💨 | |
| """) | |
| with gr.Row(): | |
| with gr.Column(): | |
| with gr.Row(): | |
| content_image = gr.Image(label="Content", type="pil") | |
| texture_image = gr.Image(label="Texture", type="pil") | |
| prompt = gr.Textbox( | |
| label="Describe", | |
| info="Apply ... texture to ...", | |
| placeholder="Apply wood siding texture to building walls." | |
| ) | |
| button = gr.Button("✨ Generate", variant="primary") | |
| with gr.Accordion("⚙️ Advanced Settings", open=False): | |
| seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0) | |
| randomize_seed = gr.Checkbox(label="Randomize Seed", value=True) | |
| true_guidance_scale = gr.Slider( | |
| label="True Guidance Scale", | |
| minimum=1.0, | |
| maximum=10.0, | |
| step=0.1, | |
| value=1.0 | |
| ) | |
| num_inference_steps = gr.Slider( | |
| label="Inference Steps", | |
| minimum=1, | |
| maximum=40, | |
| step=1, | |
| value=4 | |
| ) | |
| with gr.Column(): | |
| output = gr.Image(label="Output", interactive=False) | |
| seed_output = gr.Number(label="Used Seed", visible=False) | |
| # Event handlers | |
| button.click( | |
| fn=apply_texture, | |
| inputs=[ | |
| content_image, | |
| texture_image, | |
| prompt, | |
| seed, | |
| randomize_seed, | |
| true_guidance_scale, | |
| num_inference_steps | |
| ], | |
| outputs=[output, seed_output] | |
| ) | |
| # Examples | |
| gr.Examples( | |
| examples=[ | |
| ["coffee_mug.png", "wood_boxes.png", "Apply wood texture to mug"], | |
| ["leaf.webp", "salmon.webp", "Apply salmon texture to leaves and stems"], | |
| ], | |
| inputs=[ | |
| content_image, | |
| texture_image, | |
| prompt, | |
| ], | |
| outputs=[output, seed_output], | |
| fn=apply_texture, | |
| cache_examples="lazy", | |
| elem_id="examples" | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() |