Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,294 Bytes
a3f5a50 97a289e 6a3ec9b a3f5a50 67e4393 efd7824 c8b4e68 67e4393 a3f5a50 6a3ec9b a3f5a50 6a3ec9b a3f5a50 67e4393 a3f5a50 67e4393 a3f5a50 67e4393 a3f5a50 67e4393 a3f5a50 67e4393 a3f5a50 67e4393 b0661e2 67e4393 a3f5a50 67e4393 a3f5a50 67e4393 a3f5a50 67e4393 a3f5a50 67e4393 a3f5a50 932647d 67e4393 a3f5a50 67e4393 932647d a3f5a50 67e4393 3bceb05 67e4393 a3f5a50 67e4393 a3f5a50 67e4393 932647d a3f5a50 67e4393 0720854 a3f5a50 67e4393 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
import gradio as gr
import numpy as np
import random
import torch
import spaces
from PIL import Image
from diffusers import FlowMatchEulerDiscreteScheduler
from optimization import optimize_pipeline_
from qwenimage.pipeline_qwenimage_edit_plus import QwenImageEditPlusPipeline
from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel
from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3
import math
# --- Model Loading ---
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
scheduler_config = {
"base_image_seq_len": 256,
"base_shift": math.log(3),
"invert_sigmas": False,
"max_image_seq_len": 8192,
"max_shift": math.log(3),
"num_train_timesteps": 1000,
"shift": 1.0,
"shift_terminal": None,
"stochastic_sampling": False,
"time_shift_type": "exponential",
"use_beta_sigmas": False,
"use_dynamic_shifting": True,
"use_exponential_sigmas": False,
"use_karras_sigmas": False,
}
scheduler = FlowMatchEulerDiscreteScheduler.from_config(scheduler_config)
pipe = QwenImageEditPlusPipeline.from_pretrained("Qwen/Qwen-Image-Edit-2509", scheduler=scheduler, torch_dtype=dtype)
# Load the texture LoRA
pipe.load_lora_weights("tarn59/apply_texture_qwen_image_edit_2509",
weight_name="apply_texture_qwen_image_edit_2509.safetensors", adapter_name="texture")
pipe.load_lora_weights("lightx2v/Qwen-Image-Lightning",
weight_name="Qwen-Image-Lightning-4steps-V2.0-bf16.safetensors", adapter_name="lightning")
pipe.set_adapters(["texture", "lightning"], adapter_weights=[1., 1.])
pipe.fuse_lora(adapter_names=["texture", "lightning"], lora_scale=1)
pipe.unload_lora_weights()
pipe.transformer.__class__ = QwenImageTransformer2DModel
pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())
pipe.to(device)
optimize_pipeline_(pipe, image=[Image.new("RGB", (1024, 1024)), Image.new("RGB", (1024, 1024))], prompt="prompt")
MAX_SEED = np.iinfo(np.int32).max
def calculate_dimensions(image):
"""Calculate output dimensions based on content image, keeping largest side at 1024."""
if image is None:
return 1024, 1024
original_width, original_height = image.size
if original_width > original_height:
new_width = 1024
aspect_ratio = original_height / original_width
new_height = int(new_width * aspect_ratio)
else:
new_height = 1024
aspect_ratio = original_width / original_height
new_width = int(new_height * aspect_ratio)
# Ensure dimensions are multiples of 8
new_width = (new_width // 8) * 8
new_height = (new_height // 8) * 8
return new_width, new_height
@spaces.GPU
def apply_texture(
content_image,
texture_image,
prompt,
seed=42,
randomize_seed=False,
true_guidance_scale=False,
num_inference_steps=4,
progress=gr.Progress(track_tqdm=True)
):
if content_image is None:
raise gr.Error("Please upload a content image.")
if texture_image is None:
raise gr.Error("Please upload a texture image.")
if not prompt or not prompt.strip():
raise gr.Error("Please provide a description.")
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
# Calculate dimensions based on content image
width, height = calculate_dimensions(content_image)
# Prepare images
content_pil = content_image.convert("RGB") if isinstance(content_image, Image.Image) else Image.open(content_image.name).convert("RGB")
texture_pil = texture_image.convert("RGB") if isinstance(texture_image, Image.Image) else Image.open(texture_image.name).convert("RGB")
pil_images = [content_pil, texture_pil]
result = pipe(
image=pil_images,
prompt=prompt,
height=height,
width=width,
num_inference_steps=num_inference_steps,
generator=generator,
true_cfg_scale=true_guidance_scale,
num_images_per_prompt=1,
).images[0]
return result, seed
# --- UI ---
css = '''
#col-container { max-width: 800px; margin: 0 auto; }
.dark .progress-text{color: white !important}
#examples{max-width: 800px; margin: 0 auto; }
'''
with gr.Blocks(theme=gr.themes.Citrus(), css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("# Apply Texture — Qwen Image Edit")
gr.Markdown("""
Using [tarn59's Apply-Texture-Qwen-Image-Edit-2509 LoRA](https://huggingface.co/tarn59/apply_texture_qwen_image_edit_2509)
and [lightx2v/Qwen-Image-Lightning](https://huggingface.co/lightx2v/Qwen-Image-Lightning) for 4-step inference 💨
""")
with gr.Row():
with gr.Column():
with gr.Row():
content_image = gr.Image(label="Content", type="pil")
texture_image = gr.Image(label="Texture", type="pil")
prompt = gr.Textbox(
label="Describe",
info="Apply ... texture to ...",
placeholder="Apply wood siding texture to building walls."
)
button = gr.Button("✨ Generate", variant="primary")
with gr.Accordion("⚙️ Advanced Settings", open=False):
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
true_guidance_scale = gr.Slider(
label="True Guidance Scale",
minimum=1.0,
maximum=10.0,
step=0.1,
value=1.0
)
num_inference_steps = gr.Slider(
label="Inference Steps",
minimum=1,
maximum=40,
step=1,
value=4
)
with gr.Column():
output = gr.Image(label="Output", interactive=False)
seed_output = gr.Number(label="Used Seed", visible=False)
# Event handlers
button.click(
fn=apply_texture,
inputs=[
content_image,
texture_image,
prompt,
seed,
randomize_seed,
true_guidance_scale,
num_inference_steps
],
outputs=[output, seed_output]
)
# Examples
gr.Examples(
examples=[
["coffee_mug.png", "wood_boxes.png", "Apply wood texture to mug"],
["leaf.webp", "salmon.webp", "Apply salmon texture to leaves and stems"],
],
inputs=[
content_image,
texture_image,
prompt,
],
outputs=[output, seed_output],
fn=apply_texture,
cache_examples="lazy",
elem_id="examples"
)
if __name__ == "__main__":
demo.launch() |