try
Browse files
app.py
CHANGED
|
@@ -6,47 +6,39 @@ import gradio as gr
|
|
| 6 |
import datetime
|
| 7 |
import numpy as np
|
| 8 |
|
| 9 |
-
|
| 10 |
|
| 11 |
-
|
| 12 |
-
|
| 13 |
|
| 14 |
-
|
| 15 |
|
| 16 |
-
|
| 17 |
|
| 18 |
# device = 'cuda:0'
|
|
|
|
| 19 |
|
| 20 |
-
|
| 21 |
|
| 22 |
-
|
| 23 |
|
| 24 |
-
|
| 25 |
|
| 26 |
-
|
| 27 |
|
| 28 |
-
|
| 29 |
|
| 30 |
-
|
| 31 |
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
# results = []
|
| 35 |
-
|
| 36 |
-
# for sampled in zip(*loaders):
|
| 37 |
-
# numbers.append([s[0].shape for s in sampled])
|
| 38 |
-
# print(numbers[-1])
|
| 39 |
-
|
| 40 |
-
# th.tensor(numbers).mean(dim=0, dtype=th.float64)
|
| 41 |
|
| 42 |
def get_time():
|
| 43 |
return datetime.datetime.now()
|
| 44 |
|
| 45 |
-
|
| 46 |
plot_end = 2 * math.pi
|
| 47 |
|
| 48 |
|
| 49 |
-
def
|
| 50 |
global plot_end
|
| 51 |
x = np.arange(plot_end - 2 * math.pi, plot_end, 0.02)
|
| 52 |
y = np.sin(2 * math.pi * period * x)
|
|
@@ -63,6 +55,34 @@ def get_plot(period=1):
|
|
| 63 |
plot_end = 2 * math.pi
|
| 64 |
return update
|
| 65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
with gr.Blocks() as demo:
|
| 68 |
with gr.Row():
|
|
@@ -72,19 +92,19 @@ with gr.Blocks() as demo:
|
|
| 72 |
"Change the value of the slider to automatically update the plot",
|
| 73 |
label="",
|
| 74 |
)
|
| 75 |
-
|
| 76 |
label="batch size", value=1024, show_label=True
|
| 77 |
)
|
| 78 |
-
plot = gr.
|
| 79 |
with gr.Column():
|
| 80 |
name = gr.Textbox(label="Enter your name")
|
| 81 |
greeting = gr.Textbox(label="Greeting")
|
| 82 |
button = gr.Button(value="Greet")
|
| 83 |
button.click(lambda s: f"Hello {s}", name, greeting)
|
| 84 |
|
| 85 |
-
demo.load(lambda: datetime.datetime.now(), None, c_time2, every=
|
| 86 |
-
dep = demo.load(get_plot, None, plot, every=
|
| 87 |
-
|
| 88 |
|
| 89 |
if __name__ == "__main__":
|
| 90 |
demo.queue().launch()
|
|
|
|
| 6 |
import datetime
|
| 7 |
import numpy as np
|
| 8 |
|
| 9 |
+
from dgl.data import YelpDataset
|
| 10 |
|
| 11 |
+
import dgl
|
| 12 |
+
import torch as th
|
| 13 |
|
| 14 |
+
from dgl.dataloading import LaborSampler, NeighborSampler
|
| 15 |
|
| 16 |
+
data = YelpDataset()
|
| 17 |
|
| 18 |
# device = 'cuda:0'
|
| 19 |
+
device = 'cpu'
|
| 20 |
|
| 21 |
+
g = data[0].to(device)
|
| 22 |
|
| 23 |
+
num_layers = 3
|
| 24 |
|
| 25 |
+
fanouts = [10] * num_layers
|
| 26 |
|
| 27 |
+
samplers = [LaborSampler(fanouts, importance_sampling=1), LaborSampler(fanouts, importance_sampling=0), NeighborSampler(fanouts)]
|
| 28 |
|
| 29 |
+
names = ['LABOR-1', 'LABOR-0', 'NS']
|
| 30 |
|
| 31 |
+
indices = th.arange(g.num_nodes()).to(device)
|
| 32 |
|
| 33 |
+
loaders = [dgl.dataloading.DataLoader(g, indices, sampler, batch_size=batch_size, shuffle=True, drop_last=True) for sampler in samplers]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
def get_time():
|
| 36 |
return datetime.datetime.now()
|
| 37 |
|
|
|
|
| 38 |
plot_end = 2 * math.pi
|
| 39 |
|
| 40 |
|
| 41 |
+
def get_plot2(period=1):
|
| 42 |
global plot_end
|
| 43 |
x = np.arange(plot_end - 2 * math.pi, plot_end, 0.02)
|
| 44 |
y = np.sin(2 * math.pi * period * x)
|
|
|
|
| 55 |
plot_end = 2 * math.pi
|
| 56 |
return update
|
| 57 |
|
| 58 |
+
results = []
|
| 59 |
+
|
| 60 |
+
def get_plot(batch_size=1024):
|
| 61 |
+
for sampled in zip(*loaders):
|
| 62 |
+
results.append([s[0].shape for s in sampled])
|
| 63 |
+
break
|
| 64 |
+
|
| 65 |
+
y = th.tensor(results)
|
| 66 |
+
|
| 67 |
+
d = {"x": [], "y": []}
|
| 68 |
+
|
| 69 |
+
for i, name in enumerate(names):
|
| 70 |
+
yy = y[:, i]
|
| 71 |
+
d[y] += yy
|
| 72 |
+
d[x] += [name] * yy.shape[0]
|
| 73 |
+
|
| 74 |
+
update = gr.BarPlot.update(
|
| 75 |
+
value=pd.DataFrame(d),
|
| 76 |
+
x="x",
|
| 77 |
+
y="y",
|
| 78 |
+
title="Number of sampled vertices",
|
| 79 |
+
width=600,
|
| 80 |
+
height=350
|
| 81 |
+
)
|
| 82 |
+
|
| 83 |
+
return update
|
| 84 |
+
# th.tensor(results).mean(dim=0, dtype=th.float64)
|
| 85 |
+
|
| 86 |
|
| 87 |
with gr.Blocks() as demo:
|
| 88 |
with gr.Row():
|
|
|
|
| 92 |
"Change the value of the slider to automatically update the plot",
|
| 93 |
label="",
|
| 94 |
)
|
| 95 |
+
batch_size = gr.Number(
|
| 96 |
label="batch size", value=1024, show_label=True
|
| 97 |
)
|
| 98 |
+
plot = gr.BarPlot(show_label=False)
|
| 99 |
with gr.Column():
|
| 100 |
name = gr.Textbox(label="Enter your name")
|
| 101 |
greeting = gr.Textbox(label="Greeting")
|
| 102 |
button = gr.Button(value="Greet")
|
| 103 |
button.click(lambda s: f"Hello {s}", name, greeting)
|
| 104 |
|
| 105 |
+
demo.load(lambda: datetime.datetime.now(), None, c_time2, every=10)
|
| 106 |
+
dep = demo.load(get_plot, None, plot, every=10)
|
| 107 |
+
batch_size.submit(get_plot, batch_size, plot, every=10, cancels=[dep])
|
| 108 |
|
| 109 |
if __name__ == "__main__":
|
| 110 |
demo.queue().launch()
|