mfbalin commited on
Commit
2add1c3
·
1 Parent(s): 6dfd80f
Files changed (1) hide show
  1. app.py +36 -3
app.py CHANGED
@@ -6,6 +6,39 @@ import gradio as gr
6
  import datetime
7
  import numpy as np
8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  def get_time():
10
  return datetime.datetime.now()
11
 
@@ -39,8 +72,8 @@ with gr.Blocks() as demo:
39
  "Change the value of the slider to automatically update the plot",
40
  label="",
41
  )
42
- period = gr.Slider(
43
- label="Period of plot", value=1, minimum=0, maximum=10, step=1
44
  )
45
  plot = gr.LinePlot(show_label=False)
46
  with gr.Column():
@@ -51,7 +84,7 @@ with gr.Blocks() as demo:
51
 
52
  demo.load(lambda: datetime.datetime.now(), None, c_time2, every=1)
53
  dep = demo.load(get_plot, None, plot, every=1)
54
- period.change(get_plot, period, plot, every=1, cancels=[dep])
55
 
56
  if __name__ == "__main__":
57
  demo.queue().launch()
 
6
  import datetime
7
  import numpy as np
8
 
9
+ # from dgl.data import YelpDataset
10
+
11
+ # import dgl
12
+ # import torch as th
13
+
14
+ # from dgl.dataloading import LaborSampler, NeighborSampler
15
+
16
+ # data = YelpDataset()
17
+
18
+ # device = 'cuda:0'
19
+
20
+ # g = data[0].to(device)
21
+
22
+ # num_layers = 3
23
+
24
+ # fanouts = [10] * num_layers
25
+
26
+ # samplers = [LaborSampler(fanouts, importance_sampling=1), LaborSampler(fanouts, importance_sampling=0), NeighborSampler(fanouts)]
27
+
28
+ # names = ['LABOR-1', 'LABOR-0', 'NS']
29
+
30
+ # indices = th.arange(g.num_nodes()).to(device)
31
+
32
+ # loaders = [dgl.dataloading.DataLoader(g, indices, sampler, batch_size=1024, shuffle=True, drop_last=True) for sampler in samplers]
33
+
34
+ # results = []
35
+
36
+ # for sampled in zip(*loaders):
37
+ # numbers.append([s[0].shape for s in sampled])
38
+ # print(numbers[-1])
39
+
40
+ # th.tensor(numbers).mean(dim=0, dtype=th.float64)
41
+
42
  def get_time():
43
  return datetime.datetime.now()
44
 
 
72
  "Change the value of the slider to automatically update the plot",
73
  label="",
74
  )
75
+ period = gr.Number(
76
+ label="batch size", value=1024, show_label=True
77
  )
78
  plot = gr.LinePlot(show_label=False)
79
  with gr.Column():
 
84
 
85
  demo.load(lambda: datetime.datetime.now(), None, c_time2, every=1)
86
  dep = demo.load(get_plot, None, plot, every=1)
87
+ period.submit(get_plot, period, plot, every=1, cancels=[dep])
88
 
89
  if __name__ == "__main__":
90
  demo.queue().launch()