mahesh1209's picture
Create app.py
c8e57ed verified
# app.py
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import datasets, transforms
import gradio as gr
import numpy as np
from PIL import Image
# 🧱 VAE architecture
class VAE(nn.Module):
def __init__(self):
super(VAE, self).__init__()
self.fc1 = nn.Linear(784, 400)
self.fc21 = nn.Linear(400, 20)
self.fc22 = nn.Linear(400, 20)
self.fc3 = nn.Linear(20, 400)
self.fc4 = nn.Linear(400, 784)
def encode(self, x):
h1 = F.relu(self.fc1(x))
return self.fc21(h1), self.fc22(h1)
def reparam(self, mu, logvar):
std = torch.exp(0.5 * logvar)
eps = torch.randn_like(std)
return mu + eps * std
def decode(self, z):
return torch.sigmoid(self.fc4(F.relu(self.fc3(z))))
def forward(self, x):
mu, logvar = self.encode(x.view(-1, 784))
z = self.reparam(mu, logvar)
return self.decode(z), mu, logvar
# πŸ§ͺ Loss function
def vae_loss(recon_x, x, mu, logvar):
BCE = F.binary_cross_entropy(recon_x, x.view(-1, 784), reduction='sum')
KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
return BCE + KLD
# πŸ“¦ Load MNIST and train
def train_vae():
vae = VAE()
optimizer = torch.optim.Adam(vae.parameters(), lr=1e-3)
loader = torch.utils.data.DataLoader(
datasets.MNIST('.', train=True, download=True,
transform=transforms.ToTensor()),
batch_size=128, shuffle=True)
for epoch in range(1):
for x, _ in loader:
optimizer.zero_grad()
recon, mu, logvar = vae(x)
loss = vae_loss(recon, x, mu, logvar)
loss.backward()
optimizer.step()
return vae
vae_model = train_vae()
# 🎨 Gradio UI
def generate(latent1=0.0, latent2=0.0):
z = torch.tensor([[latent1]*10 + [latent2]*10])
img = vae_model.decode(z).view(28, 28).detach().numpy()
img = (img * 255).astype(np.uint8)
return Image.fromarray(img, mode='L')
demo = gr.Interface(
fn=generate,
inputs=[
gr.Slider(-3, 3, 0, label="Latent dim 1"),
gr.Slider(-3, 3, 0, label="Latent dim 2")
],
outputs=gr.Image(type="pil", label="Generated Digit"),
title="🧠 VAE Digit Generator"
)
demo.launch()