File size: 2,304 Bytes
c8e57ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
# app.py
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import datasets, transforms
import gradio as gr
import numpy as np
from PIL import Image

# 🧱 VAE architecture
class VAE(nn.Module):
    def __init__(self):
        super(VAE, self).__init__()
        self.fc1 = nn.Linear(784, 400)
        self.fc21 = nn.Linear(400, 20)
        self.fc22 = nn.Linear(400, 20)
        self.fc3 = nn.Linear(20, 400)
        self.fc4 = nn.Linear(400, 784)

    def encode(self, x):
        h1 = F.relu(self.fc1(x))
        return self.fc21(h1), self.fc22(h1)

    def reparam(self, mu, logvar):
        std = torch.exp(0.5 * logvar)
        eps = torch.randn_like(std)
        return mu + eps * std

    def decode(self, z):
        return torch.sigmoid(self.fc4(F.relu(self.fc3(z))))

    def forward(self, x):
        mu, logvar = self.encode(x.view(-1, 784))
        z = self.reparam(mu, logvar)
        return self.decode(z), mu, logvar

# πŸ§ͺ Loss function
def vae_loss(recon_x, x, mu, logvar):
    BCE = F.binary_cross_entropy(recon_x, x.view(-1, 784), reduction='sum')
    KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
    return BCE + KLD

# πŸ“¦ Load MNIST and train
def train_vae():
    vae = VAE()
    optimizer = torch.optim.Adam(vae.parameters(), lr=1e-3)
    loader = torch.utils.data.DataLoader(
        datasets.MNIST('.', train=True, download=True,
                       transform=transforms.ToTensor()),
        batch_size=128, shuffle=True)
    for epoch in range(1):
        for x, _ in loader:
            optimizer.zero_grad()
            recon, mu, logvar = vae(x)
            loss = vae_loss(recon, x, mu, logvar)
            loss.backward()
            optimizer.step()
    return vae

vae_model = train_vae()

# 🎨 Gradio UI
def generate(latent1=0.0, latent2=0.0):
    z = torch.tensor([[latent1]*10 + [latent2]*10])
    img = vae_model.decode(z).view(28, 28).detach().numpy()
    img = (img * 255).astype(np.uint8)
    return Image.fromarray(img, mode='L')

demo = gr.Interface(
    fn=generate,
    inputs=[
        gr.Slider(-3, 3, 0, label="Latent dim 1"),
        gr.Slider(-3, 3, 0, label="Latent dim 2")
    ],
    outputs=gr.Image(type="pil", label="Generated Digit"),
    title="🧠 VAE Digit Generator"
)

demo.launch()