| # LTX-Video | |
| ## Training | |
| For LoRA training, specify `--training_type lora`. For full finetuning, specify `--training_type full-finetune`. | |
| ```bash | |
| #!/bin/bash | |
| export WANDB_MODE="offline" | |
| export NCCL_P2P_DISABLE=1 | |
| export TORCH_NCCL_ENABLE_MONITORING=0 | |
| export FINETRAINERS_LOG_LEVEL=DEBUG | |
| GPU_IDS="0,1" | |
| DATA_ROOT="/path/to/dataset" | |
| CAPTION_COLUMN="prompts.txt" | |
| VIDEO_COLUMN="videos.txt" | |
| OUTPUT_DIR="/path/to/models/ltx-video/" | |
| ID_TOKEN="BW_STYLE" | |
| # Model arguments | |
| model_cmd="--model_name ltx_video \ | |
| --pretrained_model_name_or_path Lightricks/LTX-Video" | |
| # Dataset arguments | |
| dataset_cmd="--data_root $DATA_ROOT \ | |
| --video_column $VIDEO_COLUMN \ | |
| --caption_column $CAPTION_COLUMN \ | |
| --id_token $ID_TOKEN \ | |
| --video_resolution_buckets 49x512x768 \ | |
| --caption_dropout_p 0.05" | |
| # Dataloader arguments | |
| dataloader_cmd="--dataloader_num_workers 0" | |
| # Diffusion arguments | |
| diffusion_cmd="--flow_weighting_scheme logit_normal" | |
| # Training arguments | |
| training_cmd="--training_type lora \ | |
| --seed 42 \ | |
| --batch_size 1 \ | |
| --train_steps 3000 \ | |
| --rank 128 \ | |
| --lora_alpha 128 \ | |
| --target_modules to_q to_k to_v to_out.0 \ | |
| --gradient_accumulation_steps 4 \ | |
| --gradient_checkpointing \ | |
| --checkpointing_steps 500 \ | |
| --checkpointing_limit 2 \ | |
| --enable_slicing \ | |
| --enable_tiling" | |
| # Optimizer arguments | |
| optimizer_cmd="--optimizer adamw \ | |
| --lr 3e-5 \ | |
| --lr_scheduler constant_with_warmup \ | |
| --lr_warmup_steps 100 \ | |
| --lr_num_cycles 1 \ | |
| --beta1 0.9 \ | |
| --beta2 0.95 \ | |
| --weight_decay 1e-4 \ | |
| --epsilon 1e-8 \ | |
| --max_grad_norm 1.0" | |
| # Miscellaneous arguments | |
| miscellaneous_cmd="--tracker_name finetrainers-ltxv \ | |
| --output_dir $OUTPUT_DIR \ | |
| --nccl_timeout 1800 \ | |
| --report_to wandb" | |
| cmd="accelerate launch --config_file accelerate_configs/uncompiled_2.yaml --gpu_ids $GPU_IDS train.py \ | |
| $model_cmd \ | |
| $dataset_cmd \ | |
| $dataloader_cmd \ | |
| $diffusion_cmd \ | |
| $training_cmd \ | |
| $optimizer_cmd \ | |
| $miscellaneous_cmd" | |
| echo "Running command: $cmd" | |
| eval $cmd | |
| echo -ne "-------------------- Finished executing script --------------------\n\n" | |
| ``` | |
| ## Memory Usage | |
| ### LoRA | |
| > [!NOTE] | |
| > | |
| > The below measurements are done in `torch.bfloat16` precision. Memory usage can further be reduce by passing `--layerwise_upcasting_modules transformer` to the training script. This will cast the model weights to `torch.float8_e4m3fn` or `torch.float8_e5m2`, which halves the memory requirement for model weights. Computation is performed in the dtype set by `--transformer_dtype` (which defaults to `bf16`). | |
| LoRA with rank 128, batch size 1, gradient checkpointing, optimizer adamw, `49x512x768` resolution, **without precomputation**: | |
| ``` | |
| Training configuration: { | |
| "trainable parameters": 117440512, | |
| "total samples": 69, | |
| "train epochs": 1, | |
| "train steps": 10, | |
| "batches per device": 1, | |
| "total batches observed per epoch": 69, | |
| "train batch size": 1, | |
| "gradient accumulation steps": 1 | |
| } | |
| ``` | |
| | stage | memory_allocated | max_memory_reserved | | |
| |:-----------------------:|:----------------:|:-------------------:| | |
| | before training start | 13.486 | 13.879 | | |
| | before validation start | 14.146 | 17.623 | | |
| | after validation end | 14.146 | 17.623 | | |
| | after epoch 1 | 14.146 | 17.623 | | |
| | after training end | 4.461 | 17.623 | | |
| Note: requires about `18` GB of VRAM without precomputation. | |
| LoRA with rank 128, batch size 1, gradient checkpointing, optimizer adamw, `49x512x768` resolution, **with precomputation**: | |
| ``` | |
| Training configuration: { | |
| "trainable parameters": 117440512, | |
| "total samples": 1, | |
| "train epochs": 10, | |
| "train steps": 10, | |
| "batches per device": 1, | |
| "total batches observed per epoch": 1, | |
| "train batch size": 1, | |
| "gradient accumulation steps": 1 | |
| } | |
| ``` | |
| | stage | memory_allocated | max_memory_reserved | | |
| |:-----------------------------:|:----------------:|:-------------------:| | |
| | after precomputing conditions | 8.88 | 8.920 | | |
| | after precomputing latents | 9.684 | 11.613 | | |
| | before training start | 3.809 | 10.010 | | |
| | after epoch 1 | 4.26 | 10.916 | | |
| | before validation start | 4.26 | 10.916 | | |
| | after validation end | 13.924 | 17.262 | | |
| | after training end | 4.26 | 14.314 | | |
| Note: requires about `17.5` GB of VRAM with precomputation. If validation is not performed, the memory usage is reduced to `11` GB. | |
| ### Full Finetuning | |
| ``` | |
| Training configuration: { | |
| "trainable parameters": 1923385472, | |
| "total samples": 1, | |
| "train epochs": 10, | |
| "train steps": 10, | |
| "batches per device": 1, | |
| "total batches observed per epoch": 1, | |
| "train batch size": 1, | |
| "gradient accumulation steps": 1 | |
| } | |
| ``` | |
| | stage | memory_allocated | max_memory_reserved | | |
| |:-----------------------------:|:----------------:|:-------------------:| | |
| | after precomputing conditions | 8.89 | 8.937 | | |
| | after precomputing latents | 9.701 | 11.615 | | |
| | before training start | 3.583 | 4.025 | | |
| | after epoch 1 | 10.769 | 20.357 | | |
| | before validation start | 10.769 | 20.357 | | |
| | after validation end | 10.769 | 28.332 | | |
| | after training end | 10.769 | 12.904 | | |
| ## Inference | |
| Assuming your LoRA is saved and pushed to the HF Hub, and named `my-awesome-name/my-awesome-lora`, we can now use the finetuned model for inference: | |
| ```diff | |
| import torch | |
| from diffusers import LTXPipeline | |
| from diffusers.utils import export_to_video | |
| pipe = LTXPipeline.from_pretrained( | |
| "Lightricks/LTX-Video", torch_dtype=torch.bfloat16 | |
| ).to("cuda") | |
| + pipe.load_lora_weights("my-awesome-name/my-awesome-lora", adapter_name="ltxv-lora") | |
| + pipe.set_adapters(["ltxv-lora"], [0.75]) | |
| video = pipe("<my-awesome-prompt>").frames[0] | |
| export_to_video(video, "output.mp4", fps=8) | |
| ``` | |
| You can refer to the following guides to know more about the model pipeline and performing LoRA inference in `diffusers`: | |
| * [LTX-Video in Diffusers](https://huggingface.co/docs/diffusers/main/en/api/pipelines/ltx_video) | |
| * [Load LoRAs for inference](https://huggingface.co/docs/diffusers/main/en/tutorials/using_peft_for_inference) | |
| * [Merge LoRAs](https://huggingface.co/docs/diffusers/main/en/using-diffusers/merge_loras) |