Spaces:
Runtime error
Runtime error
| import os | |
| os.environ["TOKENIZERS_PARALLELISM"] = "false" | |
| import streamlit as st | |
| import torch | |
| from docquery.pipeline import get_pipeline | |
| from docquery.document import load_bytes, load_document | |
| def ensure_list(x): | |
| if isinstance(x, list): | |
| return x | |
| else: | |
| return [x] | |
| def construct_pipeline(): | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| ret = get_pipeline(device=device) | |
| return ret | |
| def run_pipeline(question, document): | |
| return construct_pipeline()(question=question, **document.context) | |
| st.markdown("# DocQuery: Query Documents w/ NLP") | |
| if "document" not in st.session_state: | |
| st.session_state["document"] = None | |
| input_type = st.radio("Pick an input type", ["Upload", "URL"], horizontal=True) | |
| def load_file_cb(): | |
| if st.session_state.file_input is None: | |
| return | |
| file = st.session_state.file_input | |
| with loading_placeholder: | |
| with st.spinner("Processing..."): | |
| document = load_bytes(file, file.name) | |
| _ = document.context | |
| st.session_state.document = document | |
| def load_url(url): | |
| if st.session_state.url_input is None: | |
| return | |
| url = st.session_state.url_input | |
| with loading_placeholder: | |
| with st.spinner("Downloading..."): | |
| document = load_document(url) | |
| with st.spinner("Processing..."): | |
| _ = document.context | |
| st.session_state.document = document | |
| if input_type == "Upload": | |
| file = st.file_uploader( | |
| "Upload a PDF or Image document", key="file_input", on_change=load_file_cb | |
| ) | |
| elif input_type == "URL": | |
| # url = st.text_input("URL", "", on_change=load_url_callback, key="url_input") | |
| url = st.text_input("URL", "", key="url_input", on_change=load_url_cb) | |
| question = st.text_input("QUESTION", "") | |
| document = st.session_state.document | |
| loading_placeholder = st.empty() | |
| if document is not None: | |
| col1, col2 = st.columns(2) | |
| col1.image(document.preview, use_column_width=True) | |
| if document is not None and question is not None and len(question) > 0: | |
| predictions = run_pipeline(question=question, document=document) | |
| col2.header("Answers") | |
| for p in ensure_list(predictions): | |
| col2.subheader(f"{ p['answer'] }: ({round(p['score'] * 100, 1)}%)") | |
| "DocQuery uses LayoutLMv1 fine-tuned on DocVQA, a document visual question answering dataset, as well as SQuAD, which boosts its English-language comprehension. To use it, simply upload an image or PDF, type a question, and click 'submit', or click one of the examples to load them." | |
| "[Github Repo](https://github.com/impira/docquery)" | |