Spaces:
Runtime error
Runtime error
Ankur Goyal
commited on
Commit
·
bc6a638
1
Parent(s):
8171e8e
Improve state management/data flow
Browse files
app.py
CHANGED
|
@@ -2,13 +2,12 @@ import os
|
|
| 2 |
|
| 3 |
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
| 4 |
|
| 5 |
-
print("Importing")
|
| 6 |
-
|
| 7 |
import streamlit as st
|
| 8 |
|
| 9 |
import torch
|
| 10 |
from docquery.pipeline import get_pipeline
|
| 11 |
-
from docquery.document import load_bytes
|
|
|
|
| 12 |
|
| 13 |
def ensure_list(x):
|
| 14 |
if isinstance(x, list):
|
|
@@ -16,27 +15,70 @@ def ensure_list(x):
|
|
| 16 |
else:
|
| 17 |
return [x]
|
| 18 |
|
|
|
|
| 19 |
@st.experimental_singleton
|
| 20 |
def construct_pipeline():
|
| 21 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 22 |
ret = get_pipeline(device=device)
|
| 23 |
return ret
|
| 24 |
|
|
|
|
| 25 |
@st.cache
|
| 26 |
def run_pipeline(question, document):
|
| 27 |
return construct_pipeline()(question=question, **document.context)
|
| 28 |
|
| 29 |
-
|
| 30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
question = st.text_input("QUESTION", "")
|
| 32 |
|
| 33 |
-
|
|
|
|
|
|
|
| 34 |
col1, col2 = st.columns(2)
|
| 35 |
-
|
| 36 |
-
document = load_bytes(file, file.name)
|
| 37 |
col1.image(document.preview, use_column_width=True)
|
| 38 |
|
| 39 |
-
if
|
| 40 |
predictions = run_pipeline(question=question, document=document)
|
| 41 |
|
| 42 |
col2.header("Answers")
|
|
|
|
| 2 |
|
| 3 |
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
| 4 |
|
|
|
|
|
|
|
| 5 |
import streamlit as st
|
| 6 |
|
| 7 |
import torch
|
| 8 |
from docquery.pipeline import get_pipeline
|
| 9 |
+
from docquery.document import load_bytes, load_document
|
| 10 |
+
|
| 11 |
|
| 12 |
def ensure_list(x):
|
| 13 |
if isinstance(x, list):
|
|
|
|
| 15 |
else:
|
| 16 |
return [x]
|
| 17 |
|
| 18 |
+
|
| 19 |
@st.experimental_singleton
|
| 20 |
def construct_pipeline():
|
| 21 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 22 |
ret = get_pipeline(device=device)
|
| 23 |
return ret
|
| 24 |
|
| 25 |
+
|
| 26 |
@st.cache
|
| 27 |
def run_pipeline(question, document):
|
| 28 |
return construct_pipeline()(question=question, **document.context)
|
| 29 |
|
| 30 |
+
|
| 31 |
+
st.markdown("# DocQuery: Query Documents w/ NLP")
|
| 32 |
+
|
| 33 |
+
if "document" not in st.session_state:
|
| 34 |
+
st.session_state["document"] = None
|
| 35 |
+
|
| 36 |
+
input_type = st.radio("Pick an input type", ["Upload", "URL"], horizontal=True)
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
def load_file_cb():
|
| 40 |
+
if st.session_state.file_input is None:
|
| 41 |
+
return
|
| 42 |
+
|
| 43 |
+
file = st.session_state.file_input
|
| 44 |
+
with loading_placeholder:
|
| 45 |
+
with st.spinner("Processing..."):
|
| 46 |
+
document = load_bytes(file, file.name)
|
| 47 |
+
_ = document.context
|
| 48 |
+
st.session_state.document = document
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
def load_url(url):
|
| 52 |
+
if st.session_state.url_input is None:
|
| 53 |
+
return
|
| 54 |
+
|
| 55 |
+
url = st.session_state.url_input
|
| 56 |
+
with loading_placeholder:
|
| 57 |
+
with st.spinner("Downloading..."):
|
| 58 |
+
document = load_document(url)
|
| 59 |
+
with st.spinner("Processing..."):
|
| 60 |
+
_ = document.context
|
| 61 |
+
st.session_state.document = document
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
if input_type == "Upload":
|
| 65 |
+
file = st.file_uploader(
|
| 66 |
+
"Upload a PDF or Image document", key="file_input", on_change=load_file_cb
|
| 67 |
+
)
|
| 68 |
+
|
| 69 |
+
elif input_type == "URL":
|
| 70 |
+
# url = st.text_input("URL", "", on_change=load_url_callback, key="url_input")
|
| 71 |
+
url = st.text_input("URL", "", key="url_input", on_change=load_url_cb)
|
| 72 |
+
|
| 73 |
question = st.text_input("QUESTION", "")
|
| 74 |
|
| 75 |
+
document = st.session_state.document
|
| 76 |
+
loading_placeholder = st.empty()
|
| 77 |
+
if document is not None:
|
| 78 |
col1, col2 = st.columns(2)
|
|
|
|
|
|
|
| 79 |
col1.image(document.preview, use_column_width=True)
|
| 80 |
|
| 81 |
+
if document is not None and question is not None and len(question) > 0:
|
| 82 |
predictions = run_pipeline(question=question, document=document)
|
| 83 |
|
| 84 |
col2.header("Answers")
|