|
|
import math
|
|
|
|
|
|
from einops import rearrange, reduce
|
|
|
import torch
|
|
|
import torch.nn as nn
|
|
|
from torch.autograd import Function
|
|
|
import torch.nn.functional as F
|
|
|
|
|
|
|
|
|
class DifferentiableEntropyFunction(Function):
|
|
|
@staticmethod
|
|
|
def forward(ctx, zq, basis, K, eps):
|
|
|
zb = (zq + 1) / 2
|
|
|
zi = ((zb * basis).sum(-1)).to(torch.int64)
|
|
|
cnt = torch.scatter_reduce(torch.zeros(2 ** K, device=zq.device, dtype=zq.dtype),
|
|
|
0,
|
|
|
zi.flatten(),
|
|
|
torch.ones_like(zi.flatten()).to(zq.dtype),
|
|
|
'sum')
|
|
|
prob = (cnt + eps) / (cnt + eps).sum()
|
|
|
H = -(prob * torch.log(prob)).sum()
|
|
|
ctx.save_for_backward(zq, zi, prob)
|
|
|
ctx.K = K
|
|
|
return H
|
|
|
|
|
|
@staticmethod
|
|
|
def backward(ctx, grad_output):
|
|
|
zq, zi, prob = ctx.saved_tensors
|
|
|
grad_array = -grad_output * (torch.log(prob) + 1) / zi.numel() / ctx.K
|
|
|
reord_grad = grad_array[zi.flatten()].reshape(zi.shape)
|
|
|
grad_input = reord_grad.unsqueeze(-1) * zq
|
|
|
return grad_input, None, None, None, None
|
|
|
|
|
|
|
|
|
def codebook_entropy(zq, basis, K, eps=1e-4):
|
|
|
return DifferentiableEntropyFunction.apply(zq, basis, K, eps)
|
|
|
|
|
|
|
|
|
class BinarySphericalQuantizer(nn.Module):
|
|
|
def __init__(self, embed_dim, beta, gamma0, gamma, zeta,
|
|
|
input_format='bchw',
|
|
|
soft_entropy=True, group_size=9,
|
|
|
persample_entropy_compute='analytical',
|
|
|
cb_entropy_compute='group',
|
|
|
l2_norm=True,
|
|
|
inv_temperature=1):
|
|
|
"""
|
|
|
Paper link: https://arxiv.org/pdf/2406.07548.pdf
|
|
|
Here we use the official implementation of the BinarySphericalQuantizer.
|
|
|
"""
|
|
|
super().__init__()
|
|
|
self.embed_dim = embed_dim
|
|
|
self.beta = beta
|
|
|
self.gamma0 = gamma0
|
|
|
self.gamma = gamma
|
|
|
self.zeta = zeta
|
|
|
self.input_format = input_format
|
|
|
assert self.embed_dim % group_size == 0, "embed_dim must be divisible by group_size"
|
|
|
self.num_groups = self.embed_dim // group_size
|
|
|
self.group_size = group_size
|
|
|
assert persample_entropy_compute in ['group', 'analytical'], "persample_entropy_compute must be either 'group' or 'analytical'"
|
|
|
assert cb_entropy_compute in ['group', 'nce'], "cb_entropy_compute must be either 'group' or 'nce'"
|
|
|
self.persample_entropy_compute = persample_entropy_compute
|
|
|
self.cb_entropy_compute = cb_entropy_compute
|
|
|
self.l2_norm = l2_norm
|
|
|
self.inv_temperature = inv_temperature
|
|
|
|
|
|
self.register_buffer('basis', 2 ** torch.arange(embed_dim - 1, -1, -1))
|
|
|
self.register_buffer('group_basis', 2 ** torch.arange(group_size - 1, -1, -1))
|
|
|
|
|
|
self.num_dimensions = 2 ** embed_dim
|
|
|
self.bits_per_index = embed_dim
|
|
|
|
|
|
|
|
|
|
|
|
group_codes = torch.arange(2 ** self.group_size)
|
|
|
group_codebook = self.indexes_to_codes(group_codes).float()[:, -group_size:]
|
|
|
self.register_buffer('group_codebook', group_codebook, persistent=False)
|
|
|
|
|
|
self.soft_entropy = soft_entropy
|
|
|
|
|
|
def quantize(self, z):
|
|
|
assert z.shape[-1] == self.embed_dim, f"Expected {self.embed_dim} dimensions, got {z.shape[-1]}"
|
|
|
|
|
|
zhat = torch.where(z > 0,
|
|
|
torch.tensor(1, dtype=z.dtype, device=z.device),
|
|
|
torch.tensor(-1, dtype=z.dtype, device=z.device))
|
|
|
return z + (zhat - z).detach()
|
|
|
|
|
|
def forward(self, z):
|
|
|
|
|
|
|
|
|
zq = self.quantize(z)
|
|
|
|
|
|
indices = self.codes_to_indexes(zq.detach())
|
|
|
group_indices = self.codes_to_group_indexes(zq.detach())
|
|
|
if not self.training:
|
|
|
used_codes = torch.unique(indices, return_counts=False)
|
|
|
else:
|
|
|
used_codes = None
|
|
|
|
|
|
q_scale = 1. / (self.embed_dim ** 0.5) if self.l2_norm else 1.
|
|
|
|
|
|
if self.soft_entropy:
|
|
|
persample_entropy, cb_entropy, avg_prob = self.soft_entropy_loss(z)
|
|
|
entropy_penalty = self.gamma0 * persample_entropy - self.gamma * cb_entropy
|
|
|
else:
|
|
|
zb_by_sample = ((zq + 1) / 2).reshape(z.shape[0], -1, z.shape[-1]).to(torch.float32)
|
|
|
persample_entropy = self.get_hard_per_sample_entropy(zb_by_sample)
|
|
|
cb_entropy = codebook_entropy(zq, self.basis, self.embed_dim)
|
|
|
entropy_penalty = self.gamma0 * persample_entropy - self.gamma * cb_entropy
|
|
|
|
|
|
zq = zq * q_scale
|
|
|
|
|
|
|
|
|
commit_loss = self.beta * torch.mean(((zq.detach() - z) ** 2).sum(dim=-1))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return (
|
|
|
zq,
|
|
|
commit_loss + self.zeta * entropy_penalty / self.inv_temperature,
|
|
|
{"H": cb_entropy, "used_codes": used_codes, "indices": indices, "group_indices": group_indices,
|
|
|
"avg_prob": avg_prob}
|
|
|
)
|
|
|
|
|
|
def soft_entropy_loss(self, z):
|
|
|
|
|
|
|
|
|
group_code_book = self.group_codebook / (self.embed_dim ** 0.5 if self.l2_norm else 1)
|
|
|
divided_z = rearrange(z, '... (g c) -> ... g c', c=self.group_size)
|
|
|
|
|
|
|
|
|
distance = - 2 * torch.einsum('... g c, d c ->... g d', divided_z, group_code_book)
|
|
|
prob = (-distance * self.inv_temperature).softmax(dim=-1)
|
|
|
if self.persample_entropy_compute == 'analytical':
|
|
|
if self.l2_norm:
|
|
|
p = torch.sigmoid(-4 * z / (self.embed_dim ** 0.5) * self.inv_temperature)
|
|
|
else:
|
|
|
p = torch.sigmoid(-4 * z * self.inv_temperature)
|
|
|
prob = torch.stack([p, 1 - p], dim=-1)
|
|
|
per_sample_entropy = self.get_entropy(prob, dim=-1, normalize=False).sum(dim=-1).mean()
|
|
|
else:
|
|
|
per_sample_entropy = self.get_entropy(prob, dim=-1, normalize=False).sum(dim=-1).mean()
|
|
|
|
|
|
|
|
|
avg_prob = reduce(prob, '... g d ->g d', 'mean')
|
|
|
codebook_entropy = self.get_entropy(avg_prob, dim=-1, normalize=False)
|
|
|
|
|
|
|
|
|
return per_sample_entropy, codebook_entropy.sum(), avg_prob
|
|
|
|
|
|
def get_hard_per_sample_entropy(self, zb_by_sample):
|
|
|
probs_per_dim = zb_by_sample.sum(1) / zb_by_sample.shape[1]
|
|
|
persample_entropy = - probs_per_dim * torch.log(probs_per_dim + 1e-8) - (1 - probs_per_dim) * torch.log(1 - probs_per_dim + 1e-8)
|
|
|
persample_entropy = persample_entropy.sum(-1)
|
|
|
return persample_entropy.mean()
|
|
|
|
|
|
def codes_to_indexes(self, zhat):
|
|
|
"""Converts a `code` to an index in the codebook.
|
|
|
Args:
|
|
|
zhat: A tensor of shape (B, ..., C) containing the codes. must be in {-1, 1}
|
|
|
"""
|
|
|
assert zhat.shape[-1] == self.embed_dim, f"Expected {self.embed_dim} dimensions, got {zhat.shape[-1]}"
|
|
|
return ((zhat + 1) / 2 * self.basis).sum(axis=-1).to(torch.int64)
|
|
|
|
|
|
def codes_to_group_indexes(self, zhat):
|
|
|
"""Converts a `code` to a list of indexes (in groups) in the codebook.
|
|
|
Args:
|
|
|
zhat: A tensor of shape (B, ..., C) containing the codes. must be in {-1, 1}
|
|
|
"""
|
|
|
zhat_in_group = rearrange(zhat, 'b ... (g c) -> b ... g c', c=self.group_size)
|
|
|
return ((zhat_in_group + 1) / 2 * self.group_basis).sum(axis=-1).to(torch.int64)
|
|
|
|
|
|
def indexes_to_codes(self, indices):
|
|
|
"""Inverse of `indexes_to_codes`."""
|
|
|
indices = indices.unsqueeze(-1)
|
|
|
codes_non_centered = torch.remainder(
|
|
|
torch.floor_divide(indices, self.basis), 2
|
|
|
)
|
|
|
return codes_non_centered * 2 - 1
|
|
|
|
|
|
def group_indexes_to_codes(self, group_indices):
|
|
|
"""Inverse of `group_indexes_to_codes`."""
|
|
|
group_indices = group_indices.unsqueeze(-1)
|
|
|
codes_non_centered = torch.remainder(
|
|
|
torch.floor_divide(group_indices, self.group_basis), 2
|
|
|
)
|
|
|
codes_non_centered = rearrange(codes_non_centered, 'b ... g c -> b ... (g c)')
|
|
|
return codes_non_centered * 2 - 1
|
|
|
|
|
|
def get_entropy(self, count, dim=-1, eps=1e-4, normalize=True):
|
|
|
if normalize:
|
|
|
probs = (count + eps) / (count + eps).sum(dim=dim, keepdim=True)
|
|
|
else:
|
|
|
probs = count
|
|
|
H = -(probs * torch.log(probs + 1e-8)).sum(dim=dim)
|
|
|
return H
|
|
|
|
|
|
def get_group_codebook_entry(self, group_indices):
|
|
|
z_q = self.group_indexes_to_codes(group_indices)
|
|
|
q_scale = 1. / (self.embed_dim ** 0.5) if self.l2_norm else 1.
|
|
|
z_q = z_q * q_scale
|
|
|
if self.input_format == 'bchw':
|
|
|
h, w = int(z_q.shape[1] ** 0.5)
|
|
|
assert h * w == z_q.shape[1], 'Invalid sequence length'
|
|
|
z_q = rearrange(z_q, 'b (h w) c -> b c h w', h=h)
|
|
|
return z_q
|
|
|
|
|
|
def get_codebook_entry(self, indices):
|
|
|
z_q = self.indexes_to_codes(indices)
|
|
|
q_scale = 1. / (self.embed_dim ** 0.5) if self.l2_norm else 1.
|
|
|
z_q = z_q * q_scale
|
|
|
if self.input_format == 'bchw':
|
|
|
h, w = int(z_q.shape[1] ** 0.5)
|
|
|
assert h * w == z_q.shape[1], 'Invalid sequence length'
|
|
|
z_q = rearrange(z_q, 'b (h w) c -> b c h w', h=h)
|
|
|
return z_q
|
|
|
|
|
|
|
|
|
class BSQuantizer(nn.Module):
|
|
|
|
|
|
def __init__(self, s1_bits, s2_bits, beta, gamma0, gamma, zeta, group_size):
|
|
|
super().__init__()
|
|
|
self.codebook_dim = s1_bits + s2_bits
|
|
|
self.s1_bits = s1_bits
|
|
|
self.s2_bits = s2_bits
|
|
|
self.bsq = BinarySphericalQuantizer(self.codebook_dim, beta, gamma0, gamma, zeta, group_size=group_size)
|
|
|
|
|
|
def bits_to_indices(self, bits):
|
|
|
bits = (bits >= 0).to(torch.long)
|
|
|
indices = 2 ** torch.arange(
|
|
|
0,
|
|
|
bits.shape[-1],
|
|
|
1,
|
|
|
dtype=torch.long,
|
|
|
device=bits.device,
|
|
|
)
|
|
|
return (bits * indices).sum(-1)
|
|
|
|
|
|
def forward(self, z, half=False):
|
|
|
z = F.normalize(z, dim=-1)
|
|
|
quantized, bsq_loss, metrics = self.bsq(z)
|
|
|
if half:
|
|
|
q_pre = quantized[:, :, :self.s1_bits]
|
|
|
q_post = quantized[:, :, self.s1_bits:]
|
|
|
z_indices = [self.bits_to_indices(q_pre), self.bits_to_indices(q_post)]
|
|
|
else:
|
|
|
z_indices = self.bits_to_indices(quantized)
|
|
|
return bsq_loss, quantized, z_indices
|
|
|
|
|
|
|
|
|
class RMSNorm(torch.nn.Module):
|
|
|
def __init__(self, dim: int, eps: float = 1e-5):
|
|
|
super().__init__()
|
|
|
self.eps = eps
|
|
|
self.weight = nn.Parameter(torch.ones(dim))
|
|
|
|
|
|
def _norm(self, x):
|
|
|
return x * torch.rsqrt(torch.mean(x * x, dim=-1, keepdim=True) + self.eps)
|
|
|
|
|
|
def forward(self, x):
|
|
|
output = self._norm(x.float()).type_as(x)
|
|
|
return output * self.weight
|
|
|
|
|
|
|
|
|
class FeedForward(nn.Module):
|
|
|
def __init__(self, d_model, ff_dim, ffn_dropout_p=0.0):
|
|
|
super().__init__()
|
|
|
|
|
|
self.w1 = nn.Linear(d_model, ff_dim, bias=False)
|
|
|
self.w3 = nn.Linear(d_model, ff_dim, bias=False)
|
|
|
self.w2 = nn.Linear(ff_dim, d_model, bias=False)
|
|
|
self.ffn_dropout = nn.Dropout(ffn_dropout_p)
|
|
|
|
|
|
def forward(self, x):
|
|
|
return self.ffn_dropout(self.w2(F.silu(self.w1(x)) * self.w3(x)))
|
|
|
|
|
|
|
|
|
class RotaryPositionalEmbedding(nn.Module):
|
|
|
def __init__(self, dim):
|
|
|
super().__init__()
|
|
|
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2).float() / dim))
|
|
|
self.register_buffer("inv_freq", inv_freq)
|
|
|
self.seq_len_cached = None
|
|
|
self.cos_cached = None
|
|
|
self.sin_cached = None
|
|
|
|
|
|
def _update_cos_sin_cache(self, x, seq_len):
|
|
|
if seq_len != self.seq_len_cached:
|
|
|
self.seq_len_cached = seq_len
|
|
|
t = torch.arange(seq_len, device=x.device).type_as(self.inv_freq)
|
|
|
freqs = torch.einsum('i,j->ij', t, self.inv_freq)
|
|
|
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
|
|
|
self.cos_cached = emb.cos()[None, None, :, :]
|
|
|
self.sin_cached = emb.sin()[None, None, :, :]
|
|
|
return self.cos_cached, self.sin_cached
|
|
|
|
|
|
def forward(self, q, k):
|
|
|
cos, sin = self._update_cos_sin_cache(q, q.shape[-2])
|
|
|
return (
|
|
|
(q * cos) + (self._rotate_half(q) * sin),
|
|
|
(k * cos) + (self._rotate_half(k) * sin),
|
|
|
)
|
|
|
|
|
|
def _rotate_half(self, x):
|
|
|
x1, x2 = x.chunk(2, dim=-1)
|
|
|
return torch.cat((-x2, x1), dim=-1)
|
|
|
|
|
|
|
|
|
def scaled_dot_product_attention(query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False, scale=None) -> torch.Tensor:
|
|
|
L, S = query.size(-2), key.size(-2)
|
|
|
scale_factor = 1 / math.sqrt(query.size(-1)) if scale is None else scale
|
|
|
attn_bias = torch.zeros(L, S, dtype=query.dtype).to(query.device)
|
|
|
|
|
|
if is_causal:
|
|
|
assert attn_mask is None
|
|
|
temp_mask = torch.ones(L, S, dtype=torch.bool).tril(diagonal=0).to(query.device)
|
|
|
attn_bias.masked_fill_(temp_mask.logical_not(), float("-inf"))
|
|
|
attn_bias.to(query.dtype)
|
|
|
|
|
|
attn_weight = query @ key.transpose(-2, -1) * scale_factor
|
|
|
attn_weight += attn_bias
|
|
|
|
|
|
if attn_mask is not None:
|
|
|
attn_mask_bias = torch.zeros_like(attn_weight)
|
|
|
if attn_mask.dtype == torch.bool:
|
|
|
attn_mask_bias.masked_fill_(attn_mask, float("-inf"))
|
|
|
else:
|
|
|
attn_mask_bias += attn_mask
|
|
|
attn_weight += attn_mask_bias
|
|
|
|
|
|
attn_weight = torch.softmax(attn_weight, dim=-1)
|
|
|
attn_weight = torch.dropout(attn_weight, dropout_p, train=True)
|
|
|
return attn_weight @ value
|
|
|
|
|
|
|
|
|
class MultiHeadAttentionWithRoPE(nn.Module):
|
|
|
def __init__(self, d_model, n_heads, attn_dropout_p=0.0, resid_dropout_p=0.0):
|
|
|
super().__init__()
|
|
|
self.d_model = d_model
|
|
|
self.n_heads = n_heads
|
|
|
self.head_dim = d_model // n_heads
|
|
|
|
|
|
self.q_proj = nn.Linear(d_model, d_model)
|
|
|
self.k_proj = nn.Linear(d_model, d_model)
|
|
|
self.v_proj = nn.Linear(d_model, d_model)
|
|
|
self.out_proj = nn.Linear(d_model, d_model)
|
|
|
self.rotary = RotaryPositionalEmbedding(self.head_dim)
|
|
|
self.attn_dropout_p = attn_dropout_p
|
|
|
self.resid_dropout = nn.Dropout(resid_dropout_p)
|
|
|
|
|
|
def forward(self, x, key_padding_mask=None):
|
|
|
batch_size, seq_len, _ = x.shape
|
|
|
|
|
|
q = self.q_proj(x).view(batch_size, seq_len, self.n_heads, self.head_dim).transpose(1, 2)
|
|
|
k = self.k_proj(x).view(batch_size, seq_len, self.n_heads, self.head_dim).transpose(1, 2)
|
|
|
v = self.v_proj(x).view(batch_size, seq_len, self.n_heads, self.head_dim).transpose(1, 2)
|
|
|
|
|
|
q, k = self.rotary(q, k)
|
|
|
|
|
|
if key_padding_mask is not None:
|
|
|
attn_mask = key_padding_mask.unsqueeze(1).unsqueeze(2)
|
|
|
attn_mask = attn_mask.expand(-1, self.n_heads, seq_len, -1)
|
|
|
else:
|
|
|
attn_mask = None
|
|
|
|
|
|
attn_output = scaled_dot_product_attention(
|
|
|
q, k, v,
|
|
|
attn_mask=attn_mask,
|
|
|
dropout_p=self.attn_dropout_p,
|
|
|
is_causal=True
|
|
|
)
|
|
|
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous().view(batch_size, seq_len, self.d_model)
|
|
|
return self.resid_dropout(self.out_proj(attn_output))
|
|
|
|
|
|
|
|
|
class MultiHeadCrossAttentionWithRoPE(nn.Module):
|
|
|
def __init__(self, d_model, n_heads, attn_dropout_p=0.0, resid_dropout=0.0):
|
|
|
super().__init__()
|
|
|
self.d_model = d_model
|
|
|
self.n_heads = n_heads
|
|
|
self.head_dim = d_model // n_heads
|
|
|
|
|
|
self.q_proj = nn.Linear(d_model, d_model)
|
|
|
self.k_proj = nn.Linear(d_model, d_model)
|
|
|
self.v_proj = nn.Linear(d_model, d_model)
|
|
|
self.out_proj = nn.Linear(d_model, d_model)
|
|
|
self.rotary = RotaryPositionalEmbedding(self.head_dim)
|
|
|
self.attn_dropout_p = attn_dropout_p
|
|
|
self.resid_dropout = nn.Dropout(resid_dropout)
|
|
|
|
|
|
def forward(self, query, key, value, key_padding_mask=None):
|
|
|
batch_size, q_len, _ = query.shape
|
|
|
_, seq_len, _ = key.shape
|
|
|
|
|
|
q = self.q_proj(query).view(batch_size, q_len, self.n_heads, self.head_dim).transpose(1, 2)
|
|
|
k = self.k_proj(key).view(batch_size, seq_len, self.n_heads, self.head_dim).transpose(1, 2)
|
|
|
v = self.v_proj(value).view(batch_size, seq_len, self.n_heads, self.head_dim).transpose(1, 2)
|
|
|
|
|
|
q, k = self.rotary(q, k)
|
|
|
|
|
|
if key_padding_mask is not None:
|
|
|
attn_mask = key_padding_mask.unsqueeze(1).unsqueeze(2)
|
|
|
attn_mask = attn_mask.expand(-1, self.n_heads, q_len, -1)
|
|
|
else:
|
|
|
attn_mask = None
|
|
|
|
|
|
is_causal_flag = self.training
|
|
|
|
|
|
attn_output = scaled_dot_product_attention(
|
|
|
q, k, v,
|
|
|
attn_mask=attn_mask,
|
|
|
dropout_p=self.attn_dropout_p,
|
|
|
is_causal=is_causal_flag
|
|
|
)
|
|
|
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous().view(batch_size, q_len, self.d_model)
|
|
|
return self.resid_dropout(self.out_proj(attn_output))
|
|
|
|
|
|
|
|
|
class HierarchicalEmbedding(nn.Module):
|
|
|
def __init__(self, s1_bits, s2_bits, d_model=256):
|
|
|
super().__init__()
|
|
|
self.s1_bits = s1_bits
|
|
|
self.s2_bits = s2_bits
|
|
|
|
|
|
vocab_s1 = 2 ** s1_bits
|
|
|
vocab_s2 = 2 ** s2_bits
|
|
|
|
|
|
self.emb_s1 = nn.Embedding(vocab_s1, d_model)
|
|
|
self.emb_s2 = nn.Embedding(vocab_s2, d_model)
|
|
|
self.d_model = d_model
|
|
|
self.fusion_proj = nn.Linear(d_model * 2, d_model)
|
|
|
|
|
|
nn.init.normal_(self.emb_s1.weight, mean=0, std=d_model ** -0.5)
|
|
|
nn.init.normal_(self.emb_s2.weight, mean=0, std=d_model ** -0.5)
|
|
|
|
|
|
def forward(self, token_ids):
|
|
|
"""Inputs:
|
|
|
token_ids: [batch_size, seq_len] token ID
|
|
|
Output: [batch_size, seq_len, d_model]
|
|
|
"""
|
|
|
if isinstance(token_ids, tuple) or isinstance(token_ids, list):
|
|
|
s1_ids, s2_ids = token_ids
|
|
|
else:
|
|
|
s1_ids, s2_ids = self.split_token(token_ids, self.s2_bits)
|
|
|
s1_emb = self.emb_s1(s1_ids) * math.sqrt(self.d_model)
|
|
|
s2_emb = self.emb_s2(s2_ids) * math.sqrt(self.d_model)
|
|
|
return self.fusion_proj(torch.cat([s1_emb, s2_emb], dim=-1))
|
|
|
|
|
|
|
|
|
class DependencyAwareLayer(nn.Module):
|
|
|
def __init__(self, d_model, n_heads=4, attn_dropout_p=0.0, resid_dropout=0.0):
|
|
|
super().__init__()
|
|
|
self.cross_attn = MultiHeadCrossAttentionWithRoPE(d_model, n_heads, attn_dropout_p, resid_dropout)
|
|
|
self.norm = RMSNorm(d_model)
|
|
|
|
|
|
def forward(self, hidden_states, sibling_embed, key_padding_mask=None):
|
|
|
"""hidden_states: [batch, seq_len, d_model]
|
|
|
sibling_embed: Embedding from another subtoken
|
|
|
"""
|
|
|
attn_out = self.cross_attn(
|
|
|
query=sibling_embed,
|
|
|
key=hidden_states,
|
|
|
value=hidden_states,
|
|
|
key_padding_mask=key_padding_mask
|
|
|
)
|
|
|
return self.norm(hidden_states + attn_out)
|
|
|
|
|
|
|
|
|
class TransformerBlock(nn.Module):
|
|
|
def __init__(self, d_model, n_heads, ff_dim=1024, ffn_dropout_p=0.0, attn_dropout_p=0.0, resid_dropout_p=0.0):
|
|
|
super().__init__()
|
|
|
self.norm1 = RMSNorm(d_model)
|
|
|
self.self_attn = MultiHeadAttentionWithRoPE(d_model, n_heads, attn_dropout_p, resid_dropout_p)
|
|
|
self.norm2 = RMSNorm(d_model)
|
|
|
self.ffn = FeedForward(d_model, ff_dim, ffn_dropout_p)
|
|
|
|
|
|
def forward(self, x, key_padding_mask=None):
|
|
|
residual = x
|
|
|
x = self.norm1(x)
|
|
|
attn_out = self.self_attn(x, key_padding_mask=key_padding_mask)
|
|
|
x = residual + attn_out
|
|
|
|
|
|
residual = x
|
|
|
x = self.norm2(x)
|
|
|
ffn_out = self.ffn(x)
|
|
|
x = residual + ffn_out
|
|
|
return x
|
|
|
|
|
|
|
|
|
class DualHead(nn.Module):
|
|
|
def __init__(self, s1_bits, s2_bits, d_model):
|
|
|
super().__init__()
|
|
|
self.vocab_s1 = 2 ** s1_bits
|
|
|
self.vocab_s2 = 2 ** s2_bits
|
|
|
self.proj_s1 = nn.Linear(d_model, self.vocab_s1)
|
|
|
self.proj_s2 = nn.Linear(d_model, self.vocab_s2)
|
|
|
|
|
|
def compute_loss(self, s1_logits, s2_logits, s1_targets, s2_targets, padding_mask=None):
|
|
|
if padding_mask is not None:
|
|
|
valid_mask = (padding_mask == 0)
|
|
|
s1_logits = s1_logits[valid_mask]
|
|
|
s2_logits = s2_logits[valid_mask]
|
|
|
s1_targets = s1_targets[valid_mask]
|
|
|
s2_targets = s2_targets[valid_mask]
|
|
|
ce_s1 = F.cross_entropy(s1_logits, s1_targets)
|
|
|
ce_s2 = F.cross_entropy(s2_logits, s2_targets)
|
|
|
else:
|
|
|
ce_s1 = F.cross_entropy(s1_logits.reshape(-1, self.vocab_s1), s1_targets.reshape(-1))
|
|
|
ce_s2 = F.cross_entropy(s2_logits.reshape(-1, self.vocab_s2), s2_targets.reshape(-1))
|
|
|
ce_loss = (ce_s1 + ce_s2) / 2
|
|
|
return ce_loss, ce_s1, ce_s2
|
|
|
|
|
|
def forward(self, x):
|
|
|
return self.proj_s1(x)
|
|
|
|
|
|
def cond_forward(self, x2):
|
|
|
return self.proj_s2(x2)
|
|
|
|
|
|
|
|
|
class FixedEmbedding(nn.Module):
|
|
|
def __init__(self, c_in, d_model):
|
|
|
super(FixedEmbedding, self).__init__()
|
|
|
|
|
|
w = torch.zeros(c_in, d_model).float()
|
|
|
w.require_grad = False
|
|
|
|
|
|
position = torch.arange(0, c_in).float().unsqueeze(1)
|
|
|
div_term = (torch.arange(0, d_model, 2).float() * -(math.log(10000.0) / d_model)).exp()
|
|
|
|
|
|
w[:, 0::2] = torch.sin(position * div_term)
|
|
|
w[:, 1::2] = torch.cos(position * div_term)
|
|
|
|
|
|
self.emb = nn.Embedding(c_in, d_model)
|
|
|
self.emb.weight = nn.Parameter(w, requires_grad=False)
|
|
|
|
|
|
def forward(self, x):
|
|
|
return self.emb(x).detach()
|
|
|
|
|
|
|
|
|
class TemporalEmbedding(nn.Module):
|
|
|
def __init__(self, d_model, learn_pe):
|
|
|
super(TemporalEmbedding, self).__init__()
|
|
|
|
|
|
minute_size = 60
|
|
|
hour_size = 24
|
|
|
weekday_size = 7
|
|
|
day_size = 32
|
|
|
month_size = 13
|
|
|
|
|
|
Embed = FixedEmbedding if not learn_pe else nn.Embedding
|
|
|
self.minute_embed = Embed(minute_size, d_model)
|
|
|
self.hour_embed = Embed(hour_size, d_model)
|
|
|
self.weekday_embed = Embed(weekday_size, d_model)
|
|
|
self.day_embed = Embed(day_size, d_model)
|
|
|
self.month_embed = Embed(month_size, d_model)
|
|
|
|
|
|
def forward(self, x):
|
|
|
x = x.long()
|
|
|
|
|
|
minute_x = self.minute_embed(x[:, :, 0])
|
|
|
hour_x = self.hour_embed(x[:, :, 1])
|
|
|
weekday_x = self.weekday_embed(x[:, :, 2])
|
|
|
day_x = self.day_embed(x[:, :, 3])
|
|
|
month_x = self.month_embed(x[:, :, 4])
|
|
|
|
|
|
return hour_x + weekday_x + day_x + month_x + minute_x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|