File size: 23,511 Bytes
85653bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 |
import math
from einops import rearrange, reduce
import torch
import torch.nn as nn
from torch.autograd import Function
import torch.nn.functional as F
class DifferentiableEntropyFunction(Function):
@staticmethod
def forward(ctx, zq, basis, K, eps):
zb = (zq + 1) / 2
zi = ((zb * basis).sum(-1)).to(torch.int64)
cnt = torch.scatter_reduce(torch.zeros(2 ** K, device=zq.device, dtype=zq.dtype),
0,
zi.flatten(),
torch.ones_like(zi.flatten()).to(zq.dtype),
'sum')
prob = (cnt + eps) / (cnt + eps).sum()
H = -(prob * torch.log(prob)).sum()
ctx.save_for_backward(zq, zi, prob)
ctx.K = K
return H
@staticmethod
def backward(ctx, grad_output):
zq, zi, prob = ctx.saved_tensors
grad_array = -grad_output * (torch.log(prob) + 1) / zi.numel() / ctx.K
reord_grad = grad_array[zi.flatten()].reshape(zi.shape)
grad_input = reord_grad.unsqueeze(-1) * zq
return grad_input, None, None, None, None
def codebook_entropy(zq, basis, K, eps=1e-4):
return DifferentiableEntropyFunction.apply(zq, basis, K, eps)
class BinarySphericalQuantizer(nn.Module):
def __init__(self, embed_dim, beta, gamma0, gamma, zeta,
input_format='bchw',
soft_entropy=True, group_size=9,
persample_entropy_compute='analytical',
cb_entropy_compute='group',
l2_norm=True,
inv_temperature=1):
"""
Paper link: https://arxiv.org/pdf/2406.07548.pdf
Here we use the official implementation of the BinarySphericalQuantizer.
"""
super().__init__()
self.embed_dim = embed_dim
self.beta = beta # loss weight for commit loss
self.gamma0 = gamma0 # loss weight for entropy penalty
self.gamma = gamma # loss weight for entropy penalty
self.zeta = zeta # loss weight for entire entropy penalty
self.input_format = input_format
assert self.embed_dim % group_size == 0, "embed_dim must be divisible by group_size"
self.num_groups = self.embed_dim // group_size
self.group_size = group_size
assert persample_entropy_compute in ['group', 'analytical'], "persample_entropy_compute must be either 'group' or 'analytical'"
assert cb_entropy_compute in ['group', 'nce'], "cb_entropy_compute must be either 'group' or 'nce'"
self.persample_entropy_compute = persample_entropy_compute
self.cb_entropy_compute = cb_entropy_compute
self.l2_norm = l2_norm
self.inv_temperature = inv_temperature
self.register_buffer('basis', 2 ** torch.arange(embed_dim - 1, -1, -1))
self.register_buffer('group_basis', 2 ** torch.arange(group_size - 1, -1, -1))
self.num_dimensions = 2 ** embed_dim
self.bits_per_index = embed_dim
# we only need to keep the codebook portion up to the group size
# because we approximate the H loss with this subcode
group_codes = torch.arange(2 ** self.group_size)
group_codebook = self.indexes_to_codes(group_codes).float()[:, -group_size:]
self.register_buffer('group_codebook', group_codebook, persistent=False)
self.soft_entropy = soft_entropy # soft_entropy: Sec 3.2 of https://arxiv.org/pdf/1911.05894.pdf
def quantize(self, z):
assert z.shape[-1] == self.embed_dim, f"Expected {self.embed_dim} dimensions, got {z.shape[-1]}"
zhat = torch.where(z > 0,
torch.tensor(1, dtype=z.dtype, device=z.device),
torch.tensor(-1, dtype=z.dtype, device=z.device))
return z + (zhat - z).detach()
def forward(self, z):
# if self.input_format == 'bchw':
# z = rearrange(z, 'b c h w -> b h w c')
zq = self.quantize(z)
indices = self.codes_to_indexes(zq.detach())
group_indices = self.codes_to_group_indexes(zq.detach())
if not self.training:
used_codes = torch.unique(indices, return_counts=False)
else:
used_codes = None
q_scale = 1. / (self.embed_dim ** 0.5) if self.l2_norm else 1.
if self.soft_entropy:
persample_entropy, cb_entropy, avg_prob = self.soft_entropy_loss(z)
entropy_penalty = self.gamma0 * persample_entropy - self.gamma * cb_entropy
else:
zb_by_sample = ((zq + 1) / 2).reshape(z.shape[0], -1, z.shape[-1]).to(torch.float32)
persample_entropy = self.get_hard_per_sample_entropy(zb_by_sample)
cb_entropy = codebook_entropy(zq, self.basis, self.embed_dim)
entropy_penalty = self.gamma0 * persample_entropy - self.gamma * cb_entropy
zq = zq * q_scale
# commit loss
commit_loss = self.beta * torch.mean(((zq.detach() - z) ** 2).sum(dim=-1))
# if self.input_format == 'bchw':
# zq = rearrange(zq, 'b h w c -> b c h w')
return (
zq,
commit_loss + self.zeta * entropy_penalty / self.inv_temperature,
{"H": cb_entropy, "used_codes": used_codes, "indices": indices, "group_indices": group_indices,
"avg_prob": avg_prob}
)
def soft_entropy_loss(self, z):
# if we divide the code in subgroups of size group_size, the codebook will be of size 2 ** group_size
# the sub-code is the last group_size bits of the full code
group_code_book = self.group_codebook / (self.embed_dim ** 0.5 if self.l2_norm else 1)
divided_z = rearrange(z, '... (g c) -> ... g c', c=self.group_size)
# we calculate the distance between the divided_z and the codebook for each subgroup
distance = - 2 * torch.einsum('... g c, d c ->... g d', divided_z, group_code_book)
prob = (-distance * self.inv_temperature).softmax(dim=-1)
if self.persample_entropy_compute == 'analytical':
if self.l2_norm:
p = torch.sigmoid(-4 * z / (self.embed_dim ** 0.5) * self.inv_temperature)
else:
p = torch.sigmoid(-4 * z * self.inv_temperature)
prob = torch.stack([p, 1 - p], dim=-1)
per_sample_entropy = self.get_entropy(prob, dim=-1, normalize=False).sum(dim=-1).mean()
else:
per_sample_entropy = self.get_entropy(prob, dim=-1, normalize=False).sum(dim=-1).mean()
# macro average of the probability of each subgroup
avg_prob = reduce(prob, '... g d ->g d', 'mean')
codebook_entropy = self.get_entropy(avg_prob, dim=-1, normalize=False)
# the approximation of the entropy is the sum of the entropy of each subgroup
return per_sample_entropy, codebook_entropy.sum(), avg_prob
def get_hard_per_sample_entropy(self, zb_by_sample):
probs_per_dim = zb_by_sample.sum(1) / zb_by_sample.shape[1]
persample_entropy = - probs_per_dim * torch.log(probs_per_dim + 1e-8) - (1 - probs_per_dim) * torch.log(1 - probs_per_dim + 1e-8)
persample_entropy = persample_entropy.sum(-1)
return persample_entropy.mean()
def codes_to_indexes(self, zhat):
"""Converts a `code` to an index in the codebook.
Args:
zhat: A tensor of shape (B, ..., C) containing the codes. must be in {-1, 1}
"""
assert zhat.shape[-1] == self.embed_dim, f"Expected {self.embed_dim} dimensions, got {zhat.shape[-1]}"
return ((zhat + 1) / 2 * self.basis).sum(axis=-1).to(torch.int64)
def codes_to_group_indexes(self, zhat):
"""Converts a `code` to a list of indexes (in groups) in the codebook.
Args:
zhat: A tensor of shape (B, ..., C) containing the codes. must be in {-1, 1}
"""
zhat_in_group = rearrange(zhat, 'b ... (g c) -> b ... g c', c=self.group_size)
return ((zhat_in_group + 1) / 2 * self.group_basis).sum(axis=-1).to(torch.int64)
def indexes_to_codes(self, indices):
"""Inverse of `indexes_to_codes`."""
indices = indices.unsqueeze(-1)
codes_non_centered = torch.remainder(
torch.floor_divide(indices, self.basis), 2
)
return codes_non_centered * 2 - 1
def group_indexes_to_codes(self, group_indices):
"""Inverse of `group_indexes_to_codes`."""
group_indices = group_indices.unsqueeze(-1)
codes_non_centered = torch.remainder(
torch.floor_divide(group_indices, self.group_basis), 2
)
codes_non_centered = rearrange(codes_non_centered, 'b ... g c -> b ... (g c)')
return codes_non_centered * 2 - 1
def get_entropy(self, count, dim=-1, eps=1e-4, normalize=True):
if normalize:
probs = (count + eps) / (count + eps).sum(dim=dim, keepdim=True)
else:
probs = count
H = -(probs * torch.log(probs + 1e-8)).sum(dim=dim)
return H
def get_group_codebook_entry(self, group_indices):
z_q = self.group_indexes_to_codes(group_indices)
q_scale = 1. / (self.embed_dim ** 0.5) if self.l2_norm else 1.
z_q = z_q * q_scale
if self.input_format == 'bchw':
h, w = int(z_q.shape[1] ** 0.5)
assert h * w == z_q.shape[1], 'Invalid sequence length'
z_q = rearrange(z_q, 'b (h w) c -> b c h w', h=h)
return z_q
def get_codebook_entry(self, indices):
z_q = self.indexes_to_codes(indices)
q_scale = 1. / (self.embed_dim ** 0.5) if self.l2_norm else 1.
z_q = z_q * q_scale
if self.input_format == 'bchw':
h, w = int(z_q.shape[1] ** 0.5)
assert h * w == z_q.shape[1], 'Invalid sequence length'
z_q = rearrange(z_q, 'b (h w) c -> b c h w', h=h)
return z_q
class BSQuantizer(nn.Module):
def __init__(self, s1_bits, s2_bits, beta, gamma0, gamma, zeta, group_size):
super().__init__()
self.codebook_dim = s1_bits + s2_bits
self.s1_bits = s1_bits
self.s2_bits = s2_bits
self.bsq = BinarySphericalQuantizer(self.codebook_dim, beta, gamma0, gamma, zeta, group_size=group_size)
def bits_to_indices(self, bits):
bits = (bits >= 0).to(torch.long)
indices = 2 ** torch.arange(
0,
bits.shape[-1],
1,
dtype=torch.long,
device=bits.device,
)
return (bits * indices).sum(-1)
def forward(self, z, half=False):
z = F.normalize(z, dim=-1)
quantized, bsq_loss, metrics = self.bsq(z)
if half:
q_pre = quantized[:, :, :self.s1_bits]
q_post = quantized[:, :, self.s1_bits:]
z_indices = [self.bits_to_indices(q_pre), self.bits_to_indices(q_post)]
else:
z_indices = self.bits_to_indices(quantized)
return bsq_loss, quantized, z_indices
class RMSNorm(torch.nn.Module):
def __init__(self, dim: int, eps: float = 1e-5):
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim))
def _norm(self, x):
return x * torch.rsqrt(torch.mean(x * x, dim=-1, keepdim=True) + self.eps)
def forward(self, x):
output = self._norm(x.float()).type_as(x)
return output * self.weight
class FeedForward(nn.Module):
def __init__(self, d_model, ff_dim, ffn_dropout_p=0.0):
super().__init__()
self.w1 = nn.Linear(d_model, ff_dim, bias=False)
self.w3 = nn.Linear(d_model, ff_dim, bias=False)
self.w2 = nn.Linear(ff_dim, d_model, bias=False)
self.ffn_dropout = nn.Dropout(ffn_dropout_p)
def forward(self, x):
return self.ffn_dropout(self.w2(F.silu(self.w1(x)) * self.w3(x)))
class RotaryPositionalEmbedding(nn.Module):
def __init__(self, dim):
super().__init__()
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2).float() / dim))
self.register_buffer("inv_freq", inv_freq)
self.seq_len_cached = None
self.cos_cached = None
self.sin_cached = None
def _update_cos_sin_cache(self, x, seq_len):
if seq_len != self.seq_len_cached:
self.seq_len_cached = seq_len
t = torch.arange(seq_len, device=x.device).type_as(self.inv_freq)
freqs = torch.einsum('i,j->ij', t, self.inv_freq)
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
self.cos_cached = emb.cos()[None, None, :, :]
self.sin_cached = emb.sin()[None, None, :, :]
return self.cos_cached, self.sin_cached
def forward(self, q, k):
cos, sin = self._update_cos_sin_cache(q, q.shape[-2])
return (
(q * cos) + (self._rotate_half(q) * sin),
(k * cos) + (self._rotate_half(k) * sin),
)
def _rotate_half(self, x):
x1, x2 = x.chunk(2, dim=-1)
return torch.cat((-x2, x1), dim=-1)
def scaled_dot_product_attention(query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False, scale=None) -> torch.Tensor:
L, S = query.size(-2), key.size(-2)
scale_factor = 1 / math.sqrt(query.size(-1)) if scale is None else scale
attn_bias = torch.zeros(L, S, dtype=query.dtype).to(query.device)
if is_causal:
assert attn_mask is None
temp_mask = torch.ones(L, S, dtype=torch.bool).tril(diagonal=0).to(query.device)
attn_bias.masked_fill_(temp_mask.logical_not(), float("-inf"))
attn_bias.to(query.dtype)
attn_weight = query @ key.transpose(-2, -1) * scale_factor
attn_weight += attn_bias
if attn_mask is not None:
attn_mask_bias = torch.zeros_like(attn_weight)
if attn_mask.dtype == torch.bool:
attn_mask_bias.masked_fill_(attn_mask, float("-inf"))
else:
attn_mask_bias += attn_mask
attn_weight += attn_mask_bias
attn_weight = torch.softmax(attn_weight, dim=-1)
attn_weight = torch.dropout(attn_weight, dropout_p, train=True)
return attn_weight @ value
class MultiHeadAttentionWithRoPE(nn.Module):
def __init__(self, d_model, n_heads, attn_dropout_p=0.0, resid_dropout_p=0.0):
super().__init__()
self.d_model = d_model
self.n_heads = n_heads
self.head_dim = d_model // n_heads
self.q_proj = nn.Linear(d_model, d_model)
self.k_proj = nn.Linear(d_model, d_model)
self.v_proj = nn.Linear(d_model, d_model)
self.out_proj = nn.Linear(d_model, d_model)
self.rotary = RotaryPositionalEmbedding(self.head_dim)
self.attn_dropout_p = attn_dropout_p
self.resid_dropout = nn.Dropout(resid_dropout_p)
def forward(self, x, key_padding_mask=None):
batch_size, seq_len, _ = x.shape
q = self.q_proj(x).view(batch_size, seq_len, self.n_heads, self.head_dim).transpose(1, 2)
k = self.k_proj(x).view(batch_size, seq_len, self.n_heads, self.head_dim).transpose(1, 2)
v = self.v_proj(x).view(batch_size, seq_len, self.n_heads, self.head_dim).transpose(1, 2)
q, k = self.rotary(q, k)
if key_padding_mask is not None:
attn_mask = key_padding_mask.unsqueeze(1).unsqueeze(2) # [batch, 1, 1, seq_len]
attn_mask = attn_mask.expand(-1, self.n_heads, seq_len, -1) # [batch, n_heads, q_len, k_len]
else:
attn_mask = None
attn_output = scaled_dot_product_attention(
q, k, v,
attn_mask=attn_mask,
dropout_p=self.attn_dropout_p,
is_causal=True
)
attn_output = attn_output.transpose(1, 2).contiguous().view(batch_size, seq_len, self.d_model)
return self.resid_dropout(self.out_proj(attn_output))
class MultiHeadCrossAttentionWithRoPE(nn.Module):
def __init__(self, d_model, n_heads, attn_dropout_p=0.0, resid_dropout=0.0):
super().__init__()
self.d_model = d_model
self.n_heads = n_heads
self.head_dim = d_model // n_heads
self.q_proj = nn.Linear(d_model, d_model)
self.k_proj = nn.Linear(d_model, d_model)
self.v_proj = nn.Linear(d_model, d_model)
self.out_proj = nn.Linear(d_model, d_model)
self.rotary = RotaryPositionalEmbedding(self.head_dim)
self.attn_dropout_p = attn_dropout_p
self.resid_dropout = nn.Dropout(resid_dropout)
def forward(self, query, key, value, key_padding_mask=None):
batch_size, q_len, _ = query.shape
_, seq_len, _ = key.shape
q = self.q_proj(query).view(batch_size, q_len, self.n_heads, self.head_dim).transpose(1, 2)
k = self.k_proj(key).view(batch_size, seq_len, self.n_heads, self.head_dim).transpose(1, 2)
v = self.v_proj(value).view(batch_size, seq_len, self.n_heads, self.head_dim).transpose(1, 2)
q, k = self.rotary(q, k)
if key_padding_mask is not None:
attn_mask = key_padding_mask.unsqueeze(1).unsqueeze(2)
attn_mask = attn_mask.expand(-1, self.n_heads, q_len, -1)
else:
attn_mask = None
is_causal_flag = self.training
attn_output = scaled_dot_product_attention(
q, k, v,
attn_mask=attn_mask,
dropout_p=self.attn_dropout_p,
is_causal=is_causal_flag
)
attn_output = attn_output.transpose(1, 2).contiguous().view(batch_size, q_len, self.d_model)
return self.resid_dropout(self.out_proj(attn_output))
class HierarchicalEmbedding(nn.Module):
def __init__(self, s1_bits, s2_bits, d_model=256):
super().__init__()
self.s1_bits = s1_bits
self.s2_bits = s2_bits
vocab_s1 = 2 ** s1_bits
vocab_s2 = 2 ** s2_bits
self.emb_s1 = nn.Embedding(vocab_s1, d_model)
self.emb_s2 = nn.Embedding(vocab_s2, d_model)
self.d_model = d_model
self.fusion_proj = nn.Linear(d_model * 2, d_model)
nn.init.normal_(self.emb_s1.weight, mean=0, std=d_model ** -0.5)
nn.init.normal_(self.emb_s2.weight, mean=0, std=d_model ** -0.5)
def forward(self, token_ids):
"""Inputs:
token_ids: [batch_size, seq_len] token ID
Output: [batch_size, seq_len, d_model]
"""
if isinstance(token_ids, tuple) or isinstance(token_ids, list):
s1_ids, s2_ids = token_ids
else:
s1_ids, s2_ids = self.split_token(token_ids, self.s2_bits)
s1_emb = self.emb_s1(s1_ids) * math.sqrt(self.d_model)
s2_emb = self.emb_s2(s2_ids) * math.sqrt(self.d_model)
return self.fusion_proj(torch.cat([s1_emb, s2_emb], dim=-1))
class DependencyAwareLayer(nn.Module):
def __init__(self, d_model, n_heads=4, attn_dropout_p=0.0, resid_dropout=0.0):
super().__init__()
self.cross_attn = MultiHeadCrossAttentionWithRoPE(d_model, n_heads, attn_dropout_p, resid_dropout)
self.norm = RMSNorm(d_model)
def forward(self, hidden_states, sibling_embed, key_padding_mask=None):
"""hidden_states: [batch, seq_len, d_model]
sibling_embed: Embedding from another subtoken
"""
attn_out = self.cross_attn(
query=sibling_embed,
key=hidden_states,
value=hidden_states,
key_padding_mask=key_padding_mask
)
return self.norm(hidden_states + attn_out)
class TransformerBlock(nn.Module):
def __init__(self, d_model, n_heads, ff_dim=1024, ffn_dropout_p=0.0, attn_dropout_p=0.0, resid_dropout_p=0.0):
super().__init__()
self.norm1 = RMSNorm(d_model)
self.self_attn = MultiHeadAttentionWithRoPE(d_model, n_heads, attn_dropout_p, resid_dropout_p)
self.norm2 = RMSNorm(d_model)
self.ffn = FeedForward(d_model, ff_dim, ffn_dropout_p)
def forward(self, x, key_padding_mask=None):
residual = x
x = self.norm1(x)
attn_out = self.self_attn(x, key_padding_mask=key_padding_mask)
x = residual + attn_out
residual = x
x = self.norm2(x)
ffn_out = self.ffn(x)
x = residual + ffn_out
return x
class DualHead(nn.Module):
def __init__(self, s1_bits, s2_bits, d_model):
super().__init__()
self.vocab_s1 = 2 ** s1_bits
self.vocab_s2 = 2 ** s2_bits
self.proj_s1 = nn.Linear(d_model, self.vocab_s1)
self.proj_s2 = nn.Linear(d_model, self.vocab_s2)
def compute_loss(self, s1_logits, s2_logits, s1_targets, s2_targets, padding_mask=None):
if padding_mask is not None:
valid_mask = (padding_mask == 0)
s1_logits = s1_logits[valid_mask]
s2_logits = s2_logits[valid_mask]
s1_targets = s1_targets[valid_mask]
s2_targets = s2_targets[valid_mask]
ce_s1 = F.cross_entropy(s1_logits, s1_targets)
ce_s2 = F.cross_entropy(s2_logits, s2_targets)
else:
ce_s1 = F.cross_entropy(s1_logits.reshape(-1, self.vocab_s1), s1_targets.reshape(-1))
ce_s2 = F.cross_entropy(s2_logits.reshape(-1, self.vocab_s2), s2_targets.reshape(-1))
ce_loss = (ce_s1 + ce_s2) / 2
return ce_loss, ce_s1, ce_s2
def forward(self, x):
return self.proj_s1(x)
def cond_forward(self, x2):
return self.proj_s2(x2)
class FixedEmbedding(nn.Module):
def __init__(self, c_in, d_model):
super(FixedEmbedding, self).__init__()
w = torch.zeros(c_in, d_model).float()
w.require_grad = False
position = torch.arange(0, c_in).float().unsqueeze(1)
div_term = (torch.arange(0, d_model, 2).float() * -(math.log(10000.0) / d_model)).exp()
w[:, 0::2] = torch.sin(position * div_term)
w[:, 1::2] = torch.cos(position * div_term)
self.emb = nn.Embedding(c_in, d_model)
self.emb.weight = nn.Parameter(w, requires_grad=False)
def forward(self, x):
return self.emb(x).detach()
class TemporalEmbedding(nn.Module):
def __init__(self, d_model, learn_pe):
super(TemporalEmbedding, self).__init__()
minute_size = 60
hour_size = 24
weekday_size = 7
day_size = 32
month_size = 13
Embed = FixedEmbedding if not learn_pe else nn.Embedding
self.minute_embed = Embed(minute_size, d_model)
self.hour_embed = Embed(hour_size, d_model)
self.weekday_embed = Embed(weekday_size, d_model)
self.day_embed = Embed(day_size, d_model)
self.month_embed = Embed(month_size, d_model)
def forward(self, x):
x = x.long()
minute_x = self.minute_embed(x[:, :, 0])
hour_x = self.hour_embed(x[:, :, 1])
weekday_x = self.weekday_embed(x[:, :, 2])
day_x = self.day_embed(x[:, :, 3])
month_x = self.month_embed(x[:, :, 4])
return hour_x + weekday_x + day_x + month_x + minute_x
|