File size: 23,511 Bytes
85653bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
import math

from einops import rearrange, reduce
import torch
import torch.nn as nn
from torch.autograd import Function
import torch.nn.functional as F


class DifferentiableEntropyFunction(Function):
    @staticmethod
    def forward(ctx, zq, basis, K, eps):
        zb = (zq + 1) / 2
        zi = ((zb * basis).sum(-1)).to(torch.int64)
        cnt = torch.scatter_reduce(torch.zeros(2 ** K, device=zq.device, dtype=zq.dtype),
                                   0,
                                   zi.flatten(),
                                   torch.ones_like(zi.flatten()).to(zq.dtype),
                                   'sum')
        prob = (cnt + eps) / (cnt + eps).sum()
        H = -(prob * torch.log(prob)).sum()
        ctx.save_for_backward(zq, zi, prob)
        ctx.K = K
        return H

    @staticmethod
    def backward(ctx, grad_output):
        zq, zi, prob = ctx.saved_tensors
        grad_array = -grad_output * (torch.log(prob) + 1) / zi.numel() / ctx.K
        reord_grad = grad_array[zi.flatten()].reshape(zi.shape)
        grad_input = reord_grad.unsqueeze(-1) * zq
        return grad_input, None, None, None, None


def codebook_entropy(zq, basis, K, eps=1e-4):
    return DifferentiableEntropyFunction.apply(zq, basis, K, eps)


class BinarySphericalQuantizer(nn.Module):
    def __init__(self, embed_dim, beta, gamma0, gamma, zeta,

                 input_format='bchw',

                 soft_entropy=True, group_size=9,

                 persample_entropy_compute='analytical',

                 cb_entropy_compute='group',

                 l2_norm=True,

                 inv_temperature=1):
        """

        Paper link: https://arxiv.org/pdf/2406.07548.pdf

        Here we use the official implementation of the BinarySphericalQuantizer.

        """
        super().__init__()
        self.embed_dim = embed_dim
        self.beta = beta  # loss weight for commit loss
        self.gamma0 = gamma0  # loss weight for entropy penalty
        self.gamma = gamma  # loss weight for entropy penalty
        self.zeta = zeta  # loss weight for entire entropy penalty
        self.input_format = input_format
        assert self.embed_dim % group_size == 0, "embed_dim must be divisible by group_size"
        self.num_groups = self.embed_dim // group_size
        self.group_size = group_size
        assert persample_entropy_compute in ['group', 'analytical'], "persample_entropy_compute must be either 'group' or 'analytical'"
        assert cb_entropy_compute in ['group', 'nce'], "cb_entropy_compute must be either 'group' or 'nce'"
        self.persample_entropy_compute = persample_entropy_compute
        self.cb_entropy_compute = cb_entropy_compute
        self.l2_norm = l2_norm
        self.inv_temperature = inv_temperature

        self.register_buffer('basis', 2 ** torch.arange(embed_dim - 1, -1, -1))
        self.register_buffer('group_basis', 2 ** torch.arange(group_size - 1, -1, -1))

        self.num_dimensions = 2 ** embed_dim
        self.bits_per_index = embed_dim

        # we only need to keep the codebook portion up to the group size
        # because we approximate the H loss with this subcode
        group_codes = torch.arange(2 ** self.group_size)
        group_codebook = self.indexes_to_codes(group_codes).float()[:, -group_size:]
        self.register_buffer('group_codebook', group_codebook, persistent=False)

        self.soft_entropy = soft_entropy  # soft_entropy: Sec 3.2 of https://arxiv.org/pdf/1911.05894.pdf

    def quantize(self, z):
        assert z.shape[-1] == self.embed_dim, f"Expected {self.embed_dim} dimensions, got {z.shape[-1]}"

        zhat = torch.where(z > 0,
                           torch.tensor(1, dtype=z.dtype, device=z.device),
                           torch.tensor(-1, dtype=z.dtype, device=z.device))
        return z + (zhat - z).detach()

    def forward(self, z):
        # if self.input_format == 'bchw':
        #     z = rearrange(z, 'b c h w -> b h w c')
        zq = self.quantize(z)

        indices = self.codes_to_indexes(zq.detach())
        group_indices = self.codes_to_group_indexes(zq.detach())
        if not self.training:
            used_codes = torch.unique(indices, return_counts=False)
        else:
            used_codes = None

        q_scale = 1. / (self.embed_dim ** 0.5) if self.l2_norm else 1.

        if self.soft_entropy:
            persample_entropy, cb_entropy, avg_prob = self.soft_entropy_loss(z)
            entropy_penalty = self.gamma0 * persample_entropy - self.gamma * cb_entropy
        else:
            zb_by_sample = ((zq + 1) / 2).reshape(z.shape[0], -1, z.shape[-1]).to(torch.float32)
            persample_entropy = self.get_hard_per_sample_entropy(zb_by_sample)
            cb_entropy = codebook_entropy(zq, self.basis, self.embed_dim)
            entropy_penalty = self.gamma0 * persample_entropy - self.gamma * cb_entropy

        zq = zq * q_scale

        # commit loss
        commit_loss = self.beta * torch.mean(((zq.detach() - z) ** 2).sum(dim=-1))

        # if self.input_format == 'bchw':
        #     zq = rearrange(zq, 'b h w c -> b c h w')

        return (
            zq,
            commit_loss + self.zeta * entropy_penalty / self.inv_temperature,
            {"H": cb_entropy, "used_codes": used_codes, "indices": indices, "group_indices": group_indices,
             "avg_prob": avg_prob}
        )

    def soft_entropy_loss(self, z):
        # if we divide the code in subgroups of size group_size, the codebook will be of size 2 ** group_size
        # the sub-code is the last group_size bits of the full code
        group_code_book = self.group_codebook / (self.embed_dim ** 0.5 if self.l2_norm else 1)
        divided_z = rearrange(z, '... (g c) -> ... g c', c=self.group_size)

        # we calculate the distance between the divided_z and the codebook for each subgroup
        distance = - 2 * torch.einsum('... g c, d c ->... g d', divided_z, group_code_book)
        prob = (-distance * self.inv_temperature).softmax(dim=-1)
        if self.persample_entropy_compute == 'analytical':
            if self.l2_norm:
                p = torch.sigmoid(-4 * z / (self.embed_dim ** 0.5) * self.inv_temperature)
            else:
                p = torch.sigmoid(-4 * z * self.inv_temperature)
            prob = torch.stack([p, 1 - p], dim=-1)
            per_sample_entropy = self.get_entropy(prob, dim=-1, normalize=False).sum(dim=-1).mean()
        else:
            per_sample_entropy = self.get_entropy(prob, dim=-1, normalize=False).sum(dim=-1).mean()

        # macro average of the probability of each subgroup
        avg_prob = reduce(prob, '... g d ->g d', 'mean')
        codebook_entropy = self.get_entropy(avg_prob, dim=-1, normalize=False)

        # the approximation of the entropy is the sum of the entropy of each subgroup
        return per_sample_entropy, codebook_entropy.sum(), avg_prob

    def get_hard_per_sample_entropy(self, zb_by_sample):
        probs_per_dim = zb_by_sample.sum(1) / zb_by_sample.shape[1]
        persample_entropy = - probs_per_dim * torch.log(probs_per_dim + 1e-8) - (1 - probs_per_dim) * torch.log(1 - probs_per_dim + 1e-8)
        persample_entropy = persample_entropy.sum(-1)
        return persample_entropy.mean()

    def codes_to_indexes(self, zhat):
        """Converts a `code` to an index in the codebook.

        Args:

            zhat: A tensor of shape (B, ..., C) containing the codes. must be in {-1, 1}

        """
        assert zhat.shape[-1] == self.embed_dim, f"Expected {self.embed_dim} dimensions, got {zhat.shape[-1]}"
        return ((zhat + 1) / 2 * self.basis).sum(axis=-1).to(torch.int64)

    def codes_to_group_indexes(self, zhat):
        """Converts a `code` to a list of indexes (in groups) in the codebook.

        Args:

            zhat: A tensor of shape (B, ..., C) containing the codes. must be in {-1, 1}

        """
        zhat_in_group = rearrange(zhat, 'b ... (g c) -> b ... g c', c=self.group_size)
        return ((zhat_in_group + 1) / 2 * self.group_basis).sum(axis=-1).to(torch.int64)

    def indexes_to_codes(self, indices):
        """Inverse of `indexes_to_codes`."""
        indices = indices.unsqueeze(-1)
        codes_non_centered = torch.remainder(
            torch.floor_divide(indices, self.basis), 2
        )
        return codes_non_centered * 2 - 1

    def group_indexes_to_codes(self, group_indices):
        """Inverse of `group_indexes_to_codes`."""
        group_indices = group_indices.unsqueeze(-1)
        codes_non_centered = torch.remainder(
            torch.floor_divide(group_indices, self.group_basis), 2
        )
        codes_non_centered = rearrange(codes_non_centered, 'b ... g c -> b ... (g c)')
        return codes_non_centered * 2 - 1

    def get_entropy(self, count, dim=-1, eps=1e-4, normalize=True):
        if normalize:
            probs = (count + eps) / (count + eps).sum(dim=dim, keepdim=True)
        else:
            probs = count
        H = -(probs * torch.log(probs + 1e-8)).sum(dim=dim)
        return H

    def get_group_codebook_entry(self, group_indices):
        z_q = self.group_indexes_to_codes(group_indices)
        q_scale = 1. / (self.embed_dim ** 0.5) if self.l2_norm else 1.
        z_q = z_q * q_scale
        if self.input_format == 'bchw':
            h, w = int(z_q.shape[1] ** 0.5)
            assert h * w == z_q.shape[1], 'Invalid sequence length'
            z_q = rearrange(z_q, 'b (h w) c -> b c h w', h=h)
        return z_q

    def get_codebook_entry(self, indices):
        z_q = self.indexes_to_codes(indices)
        q_scale = 1. / (self.embed_dim ** 0.5) if self.l2_norm else 1.
        z_q = z_q * q_scale
        if self.input_format == 'bchw':
            h, w = int(z_q.shape[1] ** 0.5)
            assert h * w == z_q.shape[1], 'Invalid sequence length'
            z_q = rearrange(z_q, 'b (h w) c -> b c h w', h=h)
        return z_q


class BSQuantizer(nn.Module):

    def __init__(self, s1_bits, s2_bits, beta, gamma0, gamma, zeta, group_size):
        super().__init__()
        self.codebook_dim = s1_bits + s2_bits
        self.s1_bits = s1_bits
        self.s2_bits = s2_bits
        self.bsq = BinarySphericalQuantizer(self.codebook_dim, beta, gamma0, gamma, zeta, group_size=group_size)

    def bits_to_indices(self, bits):
        bits = (bits >= 0).to(torch.long)
        indices = 2 ** torch.arange(
            0,
            bits.shape[-1],
            1,
            dtype=torch.long,
            device=bits.device,
        )
        return (bits * indices).sum(-1)

    def forward(self, z, half=False):
        z = F.normalize(z, dim=-1)
        quantized, bsq_loss, metrics = self.bsq(z)
        if half:
            q_pre = quantized[:, :, :self.s1_bits]
            q_post = quantized[:, :, self.s1_bits:]
            z_indices = [self.bits_to_indices(q_pre), self.bits_to_indices(q_post)]
        else:
            z_indices = self.bits_to_indices(quantized)
        return bsq_loss, quantized, z_indices


class RMSNorm(torch.nn.Module):
    def __init__(self, dim: int, eps: float = 1e-5):
        super().__init__()
        self.eps = eps
        self.weight = nn.Parameter(torch.ones(dim))

    def _norm(self, x):
        return x * torch.rsqrt(torch.mean(x * x, dim=-1, keepdim=True) + self.eps)

    def forward(self, x):
        output = self._norm(x.float()).type_as(x)
        return output * self.weight


class FeedForward(nn.Module):
    def __init__(self, d_model, ff_dim, ffn_dropout_p=0.0):
        super().__init__()

        self.w1 = nn.Linear(d_model, ff_dim, bias=False)
        self.w3 = nn.Linear(d_model, ff_dim, bias=False)
        self.w2 = nn.Linear(ff_dim, d_model, bias=False)
        self.ffn_dropout = nn.Dropout(ffn_dropout_p)

    def forward(self, x):
        return self.ffn_dropout(self.w2(F.silu(self.w1(x)) * self.w3(x)))


class RotaryPositionalEmbedding(nn.Module):
    def __init__(self, dim):
        super().__init__()
        inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2).float() / dim))
        self.register_buffer("inv_freq", inv_freq)
        self.seq_len_cached = None
        self.cos_cached = None
        self.sin_cached = None

    def _update_cos_sin_cache(self, x, seq_len):
        if seq_len != self.seq_len_cached:
            self.seq_len_cached = seq_len
            t = torch.arange(seq_len, device=x.device).type_as(self.inv_freq)
            freqs = torch.einsum('i,j->ij', t, self.inv_freq)
            emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
            self.cos_cached = emb.cos()[None, None, :, :]
            self.sin_cached = emb.sin()[None, None, :, :]
        return self.cos_cached, self.sin_cached

    def forward(self, q, k):
        cos, sin = self._update_cos_sin_cache(q, q.shape[-2])
        return (
            (q * cos) + (self._rotate_half(q) * sin),
            (k * cos) + (self._rotate_half(k) * sin),
        )

    def _rotate_half(self, x):
        x1, x2 = x.chunk(2, dim=-1)
        return torch.cat((-x2, x1), dim=-1)


def scaled_dot_product_attention(query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False, scale=None) -> torch.Tensor:
    L, S = query.size(-2), key.size(-2)
    scale_factor = 1 / math.sqrt(query.size(-1)) if scale is None else scale
    attn_bias = torch.zeros(L, S, dtype=query.dtype).to(query.device)

    if is_causal:
        assert attn_mask is None
        temp_mask = torch.ones(L, S, dtype=torch.bool).tril(diagonal=0).to(query.device)
        attn_bias.masked_fill_(temp_mask.logical_not(), float("-inf"))
        attn_bias.to(query.dtype)

    attn_weight = query @ key.transpose(-2, -1) * scale_factor
    attn_weight += attn_bias

    if attn_mask is not None:
        attn_mask_bias = torch.zeros_like(attn_weight)
        if attn_mask.dtype == torch.bool:
            attn_mask_bias.masked_fill_(attn_mask, float("-inf"))
        else:
            attn_mask_bias += attn_mask
        attn_weight += attn_mask_bias

    attn_weight = torch.softmax(attn_weight, dim=-1)
    attn_weight = torch.dropout(attn_weight, dropout_p, train=True)
    return attn_weight @ value


class MultiHeadAttentionWithRoPE(nn.Module):
    def __init__(self, d_model, n_heads, attn_dropout_p=0.0, resid_dropout_p=0.0):
        super().__init__()
        self.d_model = d_model
        self.n_heads = n_heads
        self.head_dim = d_model // n_heads

        self.q_proj = nn.Linear(d_model, d_model)
        self.k_proj = nn.Linear(d_model, d_model)
        self.v_proj = nn.Linear(d_model, d_model)
        self.out_proj = nn.Linear(d_model, d_model)
        self.rotary = RotaryPositionalEmbedding(self.head_dim)
        self.attn_dropout_p = attn_dropout_p
        self.resid_dropout = nn.Dropout(resid_dropout_p)

    def forward(self, x, key_padding_mask=None):
        batch_size, seq_len, _ = x.shape

        q = self.q_proj(x).view(batch_size, seq_len, self.n_heads, self.head_dim).transpose(1, 2)
        k = self.k_proj(x).view(batch_size, seq_len, self.n_heads, self.head_dim).transpose(1, 2)
        v = self.v_proj(x).view(batch_size, seq_len, self.n_heads, self.head_dim).transpose(1, 2)

        q, k = self.rotary(q, k)

        if key_padding_mask is not None:
            attn_mask = key_padding_mask.unsqueeze(1).unsqueeze(2)  # [batch, 1, 1, seq_len]
            attn_mask = attn_mask.expand(-1, self.n_heads, seq_len, -1)  # [batch, n_heads, q_len, k_len]
        else:
            attn_mask = None

        attn_output = scaled_dot_product_attention(
            q, k, v,
            attn_mask=attn_mask,
            dropout_p=self.attn_dropout_p,
            is_causal=True
        )

        attn_output = attn_output.transpose(1, 2).contiguous().view(batch_size, seq_len, self.d_model)
        return self.resid_dropout(self.out_proj(attn_output))


class MultiHeadCrossAttentionWithRoPE(nn.Module):
    def __init__(self, d_model, n_heads, attn_dropout_p=0.0, resid_dropout=0.0):
        super().__init__()
        self.d_model = d_model
        self.n_heads = n_heads
        self.head_dim = d_model // n_heads

        self.q_proj = nn.Linear(d_model, d_model)
        self.k_proj = nn.Linear(d_model, d_model)
        self.v_proj = nn.Linear(d_model, d_model)
        self.out_proj = nn.Linear(d_model, d_model)
        self.rotary = RotaryPositionalEmbedding(self.head_dim)
        self.attn_dropout_p = attn_dropout_p
        self.resid_dropout = nn.Dropout(resid_dropout)

    def forward(self, query, key, value, key_padding_mask=None):
        batch_size, q_len, _ = query.shape
        _, seq_len, _ = key.shape

        q = self.q_proj(query).view(batch_size, q_len, self.n_heads, self.head_dim).transpose(1, 2)
        k = self.k_proj(key).view(batch_size, seq_len, self.n_heads, self.head_dim).transpose(1, 2)
        v = self.v_proj(value).view(batch_size, seq_len, self.n_heads, self.head_dim).transpose(1, 2)

        q, k = self.rotary(q, k)

        if key_padding_mask is not None:
            attn_mask = key_padding_mask.unsqueeze(1).unsqueeze(2)
            attn_mask = attn_mask.expand(-1, self.n_heads, q_len, -1)
        else:
            attn_mask = None

        is_causal_flag = self.training

        attn_output = scaled_dot_product_attention(
            q, k, v,
            attn_mask=attn_mask,
            dropout_p=self.attn_dropout_p,
            is_causal=is_causal_flag
        )

        attn_output = attn_output.transpose(1, 2).contiguous().view(batch_size, q_len, self.d_model)
        return self.resid_dropout(self.out_proj(attn_output))


class HierarchicalEmbedding(nn.Module):
    def __init__(self, s1_bits, s2_bits, d_model=256):
        super().__init__()
        self.s1_bits = s1_bits
        self.s2_bits = s2_bits

        vocab_s1 = 2 ** s1_bits
        vocab_s2 = 2 ** s2_bits

        self.emb_s1 = nn.Embedding(vocab_s1, d_model)
        self.emb_s2 = nn.Embedding(vocab_s2, d_model)
        self.d_model = d_model
        self.fusion_proj = nn.Linear(d_model * 2, d_model)

        nn.init.normal_(self.emb_s1.weight, mean=0, std=d_model ** -0.5)
        nn.init.normal_(self.emb_s2.weight, mean=0, std=d_model ** -0.5)

    def forward(self, token_ids):
        """Inputs:

        token_ids: [batch_size, seq_len] token ID

        Output: [batch_size, seq_len, d_model]

        """
        if isinstance(token_ids, tuple) or isinstance(token_ids, list):
            s1_ids, s2_ids = token_ids
        else:
            s1_ids, s2_ids = self.split_token(token_ids, self.s2_bits)
        s1_emb = self.emb_s1(s1_ids) * math.sqrt(self.d_model)
        s2_emb = self.emb_s2(s2_ids) * math.sqrt(self.d_model)
        return self.fusion_proj(torch.cat([s1_emb, s2_emb], dim=-1))


class DependencyAwareLayer(nn.Module):
    def __init__(self, d_model, n_heads=4, attn_dropout_p=0.0, resid_dropout=0.0):
        super().__init__()
        self.cross_attn = MultiHeadCrossAttentionWithRoPE(d_model, n_heads, attn_dropout_p, resid_dropout)
        self.norm = RMSNorm(d_model)

    def forward(self, hidden_states, sibling_embed, key_padding_mask=None):
        """hidden_states: [batch, seq_len, d_model]

        sibling_embed: Embedding from another subtoken

        """
        attn_out = self.cross_attn(
            query=sibling_embed,
            key=hidden_states,
            value=hidden_states,
            key_padding_mask=key_padding_mask
        )
        return self.norm(hidden_states + attn_out)


class TransformerBlock(nn.Module):
    def __init__(self, d_model, n_heads, ff_dim=1024, ffn_dropout_p=0.0, attn_dropout_p=0.0, resid_dropout_p=0.0):
        super().__init__()
        self.norm1 = RMSNorm(d_model)
        self.self_attn = MultiHeadAttentionWithRoPE(d_model, n_heads, attn_dropout_p, resid_dropout_p)
        self.norm2 = RMSNorm(d_model)
        self.ffn = FeedForward(d_model, ff_dim, ffn_dropout_p)

    def forward(self, x, key_padding_mask=None):
        residual = x
        x = self.norm1(x)
        attn_out = self.self_attn(x, key_padding_mask=key_padding_mask)
        x = residual + attn_out

        residual = x
        x = self.norm2(x)
        ffn_out = self.ffn(x)
        x = residual + ffn_out
        return x


class DualHead(nn.Module):
    def __init__(self, s1_bits, s2_bits, d_model):
        super().__init__()
        self.vocab_s1 = 2 ** s1_bits
        self.vocab_s2 = 2 ** s2_bits
        self.proj_s1 = nn.Linear(d_model, self.vocab_s1)
        self.proj_s2 = nn.Linear(d_model, self.vocab_s2)

    def compute_loss(self, s1_logits, s2_logits, s1_targets, s2_targets, padding_mask=None):
        if padding_mask is not None:
            valid_mask = (padding_mask == 0)
            s1_logits = s1_logits[valid_mask]
            s2_logits = s2_logits[valid_mask]
            s1_targets = s1_targets[valid_mask]
            s2_targets = s2_targets[valid_mask]
            ce_s1 = F.cross_entropy(s1_logits, s1_targets)
            ce_s2 = F.cross_entropy(s2_logits, s2_targets)
        else:
            ce_s1 = F.cross_entropy(s1_logits.reshape(-1, self.vocab_s1), s1_targets.reshape(-1))
            ce_s2 = F.cross_entropy(s2_logits.reshape(-1, self.vocab_s2), s2_targets.reshape(-1))
        ce_loss = (ce_s1 + ce_s2) / 2
        return ce_loss, ce_s1, ce_s2

    def forward(self, x):
        return self.proj_s1(x)

    def cond_forward(self, x2):
        return self.proj_s2(x2)


class FixedEmbedding(nn.Module):
    def __init__(self, c_in, d_model):
        super(FixedEmbedding, self).__init__()

        w = torch.zeros(c_in, d_model).float()
        w.require_grad = False

        position = torch.arange(0, c_in).float().unsqueeze(1)
        div_term = (torch.arange(0, d_model, 2).float() * -(math.log(10000.0) / d_model)).exp()

        w[:, 0::2] = torch.sin(position * div_term)
        w[:, 1::2] = torch.cos(position * div_term)

        self.emb = nn.Embedding(c_in, d_model)
        self.emb.weight = nn.Parameter(w, requires_grad=False)

    def forward(self, x):
        return self.emb(x).detach()


class TemporalEmbedding(nn.Module):
    def __init__(self, d_model, learn_pe):
        super(TemporalEmbedding, self).__init__()

        minute_size = 60
        hour_size = 24
        weekday_size = 7
        day_size = 32
        month_size = 13

        Embed = FixedEmbedding if not learn_pe else nn.Embedding
        self.minute_embed = Embed(minute_size, d_model)
        self.hour_embed = Embed(hour_size, d_model)
        self.weekday_embed = Embed(weekday_size, d_model)
        self.day_embed = Embed(day_size, d_model)
        self.month_embed = Embed(month_size, d_model)

    def forward(self, x):
        x = x.long()

        minute_x = self.minute_embed(x[:, :, 0])
        hour_x = self.hour_embed(x[:, :, 1])
        weekday_x = self.weekday_embed(x[:, :, 2])
        day_x = self.day_embed(x[:, :, 3])
        month_x = self.month_embed(x[:, :, 4])

        return hour_x + weekday_x + day_x + month_x + minute_x