Spaces:
Sleeping
Sleeping
Upload convert_to_tflite.py with huggingface_hub
Browse files- convert_to_tflite.py +414 -0
convert_to_tflite.py
ADDED
|
@@ -0,0 +1,414 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Convert trained DTLN model to TensorFlow Lite INT8 format
|
| 3 |
+
Optimized for Alif E7 Ethos-U55 NPU deployment
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import tensorflow as tf
|
| 7 |
+
import numpy as np
|
| 8 |
+
import soundfile as sf
|
| 9 |
+
import librosa
|
| 10 |
+
from pathlib import Path
|
| 11 |
+
import argparse
|
| 12 |
+
import os
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def load_representative_dataset(
|
| 16 |
+
audio_dir,
|
| 17 |
+
num_samples=100,
|
| 18 |
+
frame_len=512,
|
| 19 |
+
sampling_rate=16000
|
| 20 |
+
):
|
| 21 |
+
"""
|
| 22 |
+
Load representative audio dataset for calibration
|
| 23 |
+
|
| 24 |
+
Args:
|
| 25 |
+
audio_dir: Directory containing audio files
|
| 26 |
+
num_samples: Number of samples for calibration
|
| 27 |
+
frame_len: Frame length
|
| 28 |
+
sampling_rate: Audio sampling rate
|
| 29 |
+
|
| 30 |
+
Returns:
|
| 31 |
+
Generator yielding audio samples
|
| 32 |
+
"""
|
| 33 |
+
audio_files = list(Path(audio_dir).glob('**/*.wav'))
|
| 34 |
+
|
| 35 |
+
if len(audio_files) < num_samples:
|
| 36 |
+
print(f"Warning: Only {len(audio_files)} files found, using all")
|
| 37 |
+
num_samples = len(audio_files)
|
| 38 |
+
|
| 39 |
+
selected_files = np.random.choice(audio_files, num_samples, replace=False)
|
| 40 |
+
|
| 41 |
+
def representative_dataset_gen():
|
| 42 |
+
for file_path in selected_files:
|
| 43 |
+
# Load audio
|
| 44 |
+
audio, sr = sf.read(file_path)
|
| 45 |
+
|
| 46 |
+
# Resample if needed
|
| 47 |
+
if sr != sampling_rate:
|
| 48 |
+
audio = librosa.resample(
|
| 49 |
+
audio,
|
| 50 |
+
orig_sr=sr,
|
| 51 |
+
target_sr=sampling_rate
|
| 52 |
+
)
|
| 53 |
+
|
| 54 |
+
# Convert to mono
|
| 55 |
+
if len(audio.shape) > 1:
|
| 56 |
+
audio = np.mean(audio, axis=1)
|
| 57 |
+
|
| 58 |
+
# Take 1 second segment
|
| 59 |
+
segment_len = sampling_rate
|
| 60 |
+
if len(audio) > segment_len:
|
| 61 |
+
start = np.random.randint(0, len(audio) - segment_len)
|
| 62 |
+
audio = audio[start:start + segment_len]
|
| 63 |
+
else:
|
| 64 |
+
audio = np.pad(audio, (0, segment_len - len(audio)))
|
| 65 |
+
|
| 66 |
+
# Normalize
|
| 67 |
+
audio = audio / (np.max(np.abs(audio)) + 1e-8)
|
| 68 |
+
|
| 69 |
+
# Yield as float32 numpy array
|
| 70 |
+
yield [audio.astype(np.float32)[np.newaxis, :]]
|
| 71 |
+
|
| 72 |
+
return representative_dataset_gen
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
def convert_to_tflite_int8(
|
| 76 |
+
model_path,
|
| 77 |
+
output_path,
|
| 78 |
+
representative_data_dir,
|
| 79 |
+
num_calibration_samples=100
|
| 80 |
+
):
|
| 81 |
+
"""
|
| 82 |
+
Convert Keras model to TFLite with full INT8 quantization
|
| 83 |
+
|
| 84 |
+
Args:
|
| 85 |
+
model_path: Path to trained Keras model (.h5)
|
| 86 |
+
output_path: Output path for TFLite model (.tflite)
|
| 87 |
+
representative_data_dir: Directory with audio for calibration
|
| 88 |
+
num_calibration_samples: Number of samples for calibration
|
| 89 |
+
|
| 90 |
+
Returns:
|
| 91 |
+
TFLite model as bytes
|
| 92 |
+
"""
|
| 93 |
+
print("="*60)
|
| 94 |
+
print("Converting to TensorFlow Lite INT8")
|
| 95 |
+
print("="*60)
|
| 96 |
+
|
| 97 |
+
# Load model
|
| 98 |
+
print("\n1. Loading model...")
|
| 99 |
+
try:
|
| 100 |
+
model = tf.keras.models.load_model(
|
| 101 |
+
model_path,
|
| 102 |
+
compile=False
|
| 103 |
+
)
|
| 104 |
+
print(f" β Model loaded from {model_path}")
|
| 105 |
+
except Exception as e:
|
| 106 |
+
print(f" β Error loading model: {e}")
|
| 107 |
+
return None
|
| 108 |
+
|
| 109 |
+
model.summary()
|
| 110 |
+
|
| 111 |
+
# Create converter
|
| 112 |
+
print("\n2. Creating TFLite converter...")
|
| 113 |
+
converter = tf.lite.TFLiteConverter.from_keras_model(model)
|
| 114 |
+
|
| 115 |
+
# Enable optimizations
|
| 116 |
+
converter.optimizations = [tf.lite.Optimize.DEFAULT]
|
| 117 |
+
|
| 118 |
+
# Set up representative dataset for calibration
|
| 119 |
+
print("\n3. Setting up representative dataset...")
|
| 120 |
+
representative_dataset = load_representative_dataset(
|
| 121 |
+
audio_dir=representative_data_dir,
|
| 122 |
+
num_samples=num_calibration_samples
|
| 123 |
+
)
|
| 124 |
+
converter.representative_dataset = representative_dataset
|
| 125 |
+
print(f" β Using {num_calibration_samples} samples for calibration")
|
| 126 |
+
|
| 127 |
+
# Force full integer quantization
|
| 128 |
+
print("\n4. Configuring INT8 quantization...")
|
| 129 |
+
converter.target_spec.supported_ops = [
|
| 130 |
+
tf.lite.OpsSet.TFLITE_BUILTINS_INT8
|
| 131 |
+
]
|
| 132 |
+
|
| 133 |
+
# Set input/output to INT8
|
| 134 |
+
converter.inference_input_type = tf.int8
|
| 135 |
+
converter.inference_output_type = tf.int8
|
| 136 |
+
|
| 137 |
+
# Additional optimizations for Ethos-U55
|
| 138 |
+
converter.experimental_new_converter = True
|
| 139 |
+
converter.experimental_new_quantizer = True
|
| 140 |
+
|
| 141 |
+
print(" β Quantization configured:")
|
| 142 |
+
print(" - Optimization: DEFAULT")
|
| 143 |
+
print(" - Ops: TFLITE_BUILTINS_INT8")
|
| 144 |
+
print(" - Input type: INT8")
|
| 145 |
+
print(" - Output type: INT8")
|
| 146 |
+
|
| 147 |
+
# Convert
|
| 148 |
+
print("\n5. Converting model (this may take a few minutes)...")
|
| 149 |
+
try:
|
| 150 |
+
tflite_model = converter.convert()
|
| 151 |
+
print(" β Conversion successful!")
|
| 152 |
+
except Exception as e:
|
| 153 |
+
print(f" β Conversion failed: {e}")
|
| 154 |
+
return None
|
| 155 |
+
|
| 156 |
+
# Save
|
| 157 |
+
print(f"\n6. Saving TFLite model to {output_path}...")
|
| 158 |
+
with open(output_path, 'wb') as f:
|
| 159 |
+
f.write(tflite_model)
|
| 160 |
+
|
| 161 |
+
# Print statistics
|
| 162 |
+
model_size_kb = len(tflite_model) / 1024
|
| 163 |
+
print(f" β Model saved")
|
| 164 |
+
print(f" β Model size: {model_size_kb:.2f} KB")
|
| 165 |
+
|
| 166 |
+
if model_size_kb > 1024:
|
| 167 |
+
print(f" β Warning: Model size ({model_size_kb:.2f} KB) exceeds 1MB")
|
| 168 |
+
print(" Consider reducing LSTM units or other optimizations")
|
| 169 |
+
|
| 170 |
+
return tflite_model
|
| 171 |
+
|
| 172 |
+
|
| 173 |
+
def convert_to_tflite_dynamic_range(
|
| 174 |
+
model_path,
|
| 175 |
+
output_path
|
| 176 |
+
):
|
| 177 |
+
"""
|
| 178 |
+
Convert with dynamic range quantization (weights only)
|
| 179 |
+
Lighter quantization, good for testing
|
| 180 |
+
|
| 181 |
+
Args:
|
| 182 |
+
model_path: Path to trained Keras model
|
| 183 |
+
output_path: Output path for TFLite model
|
| 184 |
+
|
| 185 |
+
Returns:
|
| 186 |
+
TFLite model as bytes
|
| 187 |
+
"""
|
| 188 |
+
print("Converting with dynamic range quantization...")
|
| 189 |
+
|
| 190 |
+
model = tf.keras.models.load_model(model_path, compile=False)
|
| 191 |
+
|
| 192 |
+
converter = tf.lite.TFLiteConverter.from_keras_model(model)
|
| 193 |
+
converter.optimizations = [tf.lite.Optimize.DEFAULT]
|
| 194 |
+
|
| 195 |
+
tflite_model = converter.convert()
|
| 196 |
+
|
| 197 |
+
with open(output_path, 'wb') as f:
|
| 198 |
+
f.write(tflite_model)
|
| 199 |
+
|
| 200 |
+
print(f"β Model saved to {output_path}")
|
| 201 |
+
print(f"β Size: {len(tflite_model) / 1024:.2f} KB")
|
| 202 |
+
|
| 203 |
+
return tflite_model
|
| 204 |
+
|
| 205 |
+
|
| 206 |
+
def analyze_tflite_model(tflite_path):
|
| 207 |
+
"""
|
| 208 |
+
Analyze converted TFLite model
|
| 209 |
+
|
| 210 |
+
Args:
|
| 211 |
+
tflite_path: Path to TFLite model
|
| 212 |
+
"""
|
| 213 |
+
print("\n" + "="*60)
|
| 214 |
+
print("Model Analysis")
|
| 215 |
+
print("="*60)
|
| 216 |
+
|
| 217 |
+
# Load interpreter
|
| 218 |
+
interpreter = tf.lite.Interpreter(model_path=tflite_path)
|
| 219 |
+
interpreter.allocate_tensors()
|
| 220 |
+
|
| 221 |
+
# Get input details
|
| 222 |
+
input_details = interpreter.get_input_details()
|
| 223 |
+
output_details = interpreter.get_output_details()
|
| 224 |
+
|
| 225 |
+
print("\nπ₯ Input Tensor Details:")
|
| 226 |
+
for i, detail in enumerate(input_details):
|
| 227 |
+
print(f"\n Input {i}:")
|
| 228 |
+
print(f" Name: {detail['name']}")
|
| 229 |
+
print(f" Shape: {detail['shape']}")
|
| 230 |
+
print(f" Type: {detail['dtype']}")
|
| 231 |
+
quant = detail['quantization']
|
| 232 |
+
if quant[0] or quant[1]:
|
| 233 |
+
print(f" Scale: {quant[0]}")
|
| 234 |
+
print(f" Zero point: {quant[1]}")
|
| 235 |
+
|
| 236 |
+
print("\nπ€ Output Tensor Details:")
|
| 237 |
+
for i, detail in enumerate(output_details):
|
| 238 |
+
print(f"\n Output {i}:")
|
| 239 |
+
print(f" Name: {detail['name']}")
|
| 240 |
+
print(f" Shape: {detail['shape']}")
|
| 241 |
+
print(f" Type: {detail['dtype']}")
|
| 242 |
+
quant = detail['quantization']
|
| 243 |
+
if quant[0] or quant[1]:
|
| 244 |
+
print(f" Scale: {quant[0]}")
|
| 245 |
+
print(f" Zero point: {quant[1]}")
|
| 246 |
+
|
| 247 |
+
# Get tensor details
|
| 248 |
+
tensor_details = interpreter.get_tensor_details()
|
| 249 |
+
print(f"\nπ Total Tensors: {len(tensor_details)}")
|
| 250 |
+
|
| 251 |
+
# Count operations
|
| 252 |
+
print("\nπ§ Model Operations:")
|
| 253 |
+
ops = {}
|
| 254 |
+
for tensor in tensor_details:
|
| 255 |
+
if 'name' in tensor and tensor['name']:
|
| 256 |
+
# Extract op type from name
|
| 257 |
+
parts = tensor['name'].split('/')
|
| 258 |
+
if len(parts) > 1:
|
| 259 |
+
op_type = parts[0]
|
| 260 |
+
ops[op_type] = ops.get(op_type, 0) + 1
|
| 261 |
+
|
| 262 |
+
for op_type, count in sorted(ops.items()):
|
| 263 |
+
print(f" {op_type}: {count}")
|
| 264 |
+
|
| 265 |
+
|
| 266 |
+
def test_inference(tflite_path, test_audio_path):
|
| 267 |
+
"""
|
| 268 |
+
Test inference with TFLite model
|
| 269 |
+
|
| 270 |
+
Args:
|
| 271 |
+
tflite_path: Path to TFLite model
|
| 272 |
+
test_audio_path: Path to test audio file
|
| 273 |
+
"""
|
| 274 |
+
print("\n" + "="*60)
|
| 275 |
+
print("Testing Inference")
|
| 276 |
+
print("="*60)
|
| 277 |
+
|
| 278 |
+
# Load model
|
| 279 |
+
interpreter = tf.lite.Interpreter(model_path=tflite_path)
|
| 280 |
+
interpreter.allocate_tensors()
|
| 281 |
+
|
| 282 |
+
input_details = interpreter.get_input_details()
|
| 283 |
+
output_details = interpreter.get_output_details()
|
| 284 |
+
|
| 285 |
+
# Load test audio
|
| 286 |
+
print(f"\nLoading test audio: {test_audio_path}")
|
| 287 |
+
audio, sr = sf.read(test_audio_path)
|
| 288 |
+
|
| 289 |
+
if sr != 16000:
|
| 290 |
+
audio = librosa.resample(audio, orig_sr=sr, target_sr=16000)
|
| 291 |
+
|
| 292 |
+
if len(audio.shape) > 1:
|
| 293 |
+
audio = np.mean(audio, axis=1)
|
| 294 |
+
|
| 295 |
+
# Take 1 second
|
| 296 |
+
audio = audio[:16000]
|
| 297 |
+
if len(audio) < 16000:
|
| 298 |
+
audio = np.pad(audio, (0, 16000 - len(audio)))
|
| 299 |
+
|
| 300 |
+
# Normalize
|
| 301 |
+
audio = audio / (np.max(np.abs(audio)) + 1e-8)
|
| 302 |
+
|
| 303 |
+
# Prepare input
|
| 304 |
+
input_data = audio.astype(np.float32)[np.newaxis, :]
|
| 305 |
+
|
| 306 |
+
# Quantize input if needed
|
| 307 |
+
input_dtype = input_details[0]['dtype']
|
| 308 |
+
if input_dtype == np.int8:
|
| 309 |
+
input_scale = input_details[0]['quantization'][0]
|
| 310 |
+
input_zero_point = input_details[0]['quantization'][1]
|
| 311 |
+
input_data = (input_data / input_scale + input_zero_point).astype(np.int8)
|
| 312 |
+
|
| 313 |
+
# Run inference
|
| 314 |
+
print("\nRunning inference...")
|
| 315 |
+
interpreter.set_tensor(input_details[0]['index'], input_data)
|
| 316 |
+
|
| 317 |
+
import time
|
| 318 |
+
start = time.time()
|
| 319 |
+
interpreter.invoke()
|
| 320 |
+
latency = (time.time() - start) * 1000
|
| 321 |
+
|
| 322 |
+
print(f"β Inference completed")
|
| 323 |
+
print(f"β Latency: {latency:.2f} ms")
|
| 324 |
+
|
| 325 |
+
# Get output
|
| 326 |
+
output_data = interpreter.get_tensor(output_details[0]['index'])
|
| 327 |
+
|
| 328 |
+
# Dequantize if needed
|
| 329 |
+
output_dtype = output_details[0]['dtype']
|
| 330 |
+
if output_dtype == np.int8:
|
| 331 |
+
output_scale = output_details[0]['quantization'][0]
|
| 332 |
+
output_zero_point = output_details[0]['quantization'][1]
|
| 333 |
+
output_data = (output_data.astype(np.float32) - output_zero_point) * output_scale
|
| 334 |
+
|
| 335 |
+
print(f"β Output shape: {output_data.shape}")
|
| 336 |
+
print(f"β Output range: [{np.min(output_data):.4f}, {np.max(output_data):.4f}]")
|
| 337 |
+
|
| 338 |
+
|
| 339 |
+
if __name__ == "__main__":
|
| 340 |
+
parser = argparse.ArgumentParser(
|
| 341 |
+
description='Convert DTLN model to TFLite INT8 for Ethos-U55'
|
| 342 |
+
)
|
| 343 |
+
parser.add_argument(
|
| 344 |
+
'--model',
|
| 345 |
+
type=str,
|
| 346 |
+
required=True,
|
| 347 |
+
help='Path to trained Keras model (.h5)'
|
| 348 |
+
)
|
| 349 |
+
parser.add_argument(
|
| 350 |
+
'--output',
|
| 351 |
+
type=str,
|
| 352 |
+
required=True,
|
| 353 |
+
help='Output path for TFLite model (.tflite)'
|
| 354 |
+
)
|
| 355 |
+
parser.add_argument(
|
| 356 |
+
'--calibration-dir',
|
| 357 |
+
type=str,
|
| 358 |
+
required=True,
|
| 359 |
+
help='Directory with audio for calibration'
|
| 360 |
+
)
|
| 361 |
+
parser.add_argument(
|
| 362 |
+
'--num-calibration-samples',
|
| 363 |
+
type=int,
|
| 364 |
+
default=100,
|
| 365 |
+
help='Number of samples for calibration'
|
| 366 |
+
)
|
| 367 |
+
parser.add_argument(
|
| 368 |
+
'--test-audio',
|
| 369 |
+
type=str,
|
| 370 |
+
default=None,
|
| 371 |
+
help='Path to test audio file'
|
| 372 |
+
)
|
| 373 |
+
parser.add_argument(
|
| 374 |
+
'--dynamic-range',
|
| 375 |
+
action='store_true',
|
| 376 |
+
help='Use dynamic range quantization instead of full INT8'
|
| 377 |
+
)
|
| 378 |
+
|
| 379 |
+
args = parser.parse_args()
|
| 380 |
+
|
| 381 |
+
# Convert model
|
| 382 |
+
if args.dynamic_range:
|
| 383 |
+
tflite_model = convert_to_tflite_dynamic_range(
|
| 384 |
+
args.model,
|
| 385 |
+
args.output
|
| 386 |
+
)
|
| 387 |
+
else:
|
| 388 |
+
tflite_model = convert_to_tflite_int8(
|
| 389 |
+
model_path=args.model,
|
| 390 |
+
output_path=args.output,
|
| 391 |
+
representative_data_dir=args.calibration_dir,
|
| 392 |
+
num_calibration_samples=args.num_calibration_samples
|
| 393 |
+
)
|
| 394 |
+
|
| 395 |
+
if tflite_model is None:
|
| 396 |
+
print("\nβ Conversion failed!")
|
| 397 |
+
exit(1)
|
| 398 |
+
|
| 399 |
+
# Analyze model
|
| 400 |
+
analyze_tflite_model(args.output)
|
| 401 |
+
|
| 402 |
+
# Test inference if test audio provided
|
| 403 |
+
if args.test_audio and os.path.exists(args.test_audio):
|
| 404 |
+
test_inference(args.output, args.test_audio)
|
| 405 |
+
|
| 406 |
+
print("\n" + "="*60)
|
| 407 |
+
print("β All done!")
|
| 408 |
+
print(f"β TFLite model saved to: {args.output}")
|
| 409 |
+
print("\nNext steps:")
|
| 410 |
+
print("1. Use Vela compiler to optimize for Ethos-U55:")
|
| 411 |
+
print(f" vela --accelerator-config ethos-u55-256 {args.output}")
|
| 412 |
+
print("2. Integrate into Alif E7 application")
|
| 413 |
+
print("3. Profile on actual hardware")
|
| 414 |
+
print("="*60)
|