Spaces:
Sleeping
Sleeping
Upload train_dtln.py with huggingface_hub
Browse files- train_dtln.py +445 -0
train_dtln.py
ADDED
|
@@ -0,0 +1,445 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Training script for DTLN model with Quantization-Aware Training (QAT)
|
| 3 |
+
Optimized for deployment on Alif E7 Ethos-U55 NPU
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import tensorflow as tf
|
| 7 |
+
import tensorflow_model_optimization as tfmot
|
| 8 |
+
import numpy as np
|
| 9 |
+
import soundfile as sf
|
| 10 |
+
import librosa
|
| 11 |
+
from pathlib import Path
|
| 12 |
+
import argparse
|
| 13 |
+
from dtln_ethos_u55 import DTLN_Ethos_U55
|
| 14 |
+
import os
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
class AudioDataGenerator(tf.keras.utils.Sequence):
|
| 18 |
+
"""
|
| 19 |
+
Data generator for training audio denoising models
|
| 20 |
+
Loads clean and noisy audio pairs
|
| 21 |
+
"""
|
| 22 |
+
|
| 23 |
+
def __init__(
|
| 24 |
+
self,
|
| 25 |
+
clean_audio_dir,
|
| 26 |
+
noise_audio_dir,
|
| 27 |
+
batch_size=16,
|
| 28 |
+
frame_len=512,
|
| 29 |
+
frame_shift=128,
|
| 30 |
+
sampling_rate=16000,
|
| 31 |
+
snr_range=(0, 20),
|
| 32 |
+
shuffle=True
|
| 33 |
+
):
|
| 34 |
+
"""
|
| 35 |
+
Args:
|
| 36 |
+
clean_audio_dir: Directory containing clean speech files
|
| 37 |
+
noise_audio_dir: Directory containing noise files
|
| 38 |
+
batch_size: Batch size for training
|
| 39 |
+
frame_len: Frame length in samples
|
| 40 |
+
frame_shift: Frame shift in samples
|
| 41 |
+
sampling_rate: Target sampling rate
|
| 42 |
+
snr_range: Range of SNR for mixing (min, max) in dB
|
| 43 |
+
shuffle: Whether to shuffle data each epoch
|
| 44 |
+
"""
|
| 45 |
+
self.clean_files = list(Path(clean_audio_dir).glob('**/*.wav'))
|
| 46 |
+
self.noise_files = list(Path(noise_audio_dir).glob('**/*.wav'))
|
| 47 |
+
|
| 48 |
+
self.batch_size = batch_size
|
| 49 |
+
self.frame_len = frame_len
|
| 50 |
+
self.frame_shift = frame_shift
|
| 51 |
+
self.sampling_rate = sampling_rate
|
| 52 |
+
self.snr_range = snr_range
|
| 53 |
+
self.shuffle = shuffle
|
| 54 |
+
|
| 55 |
+
# Segment length for training (1 second)
|
| 56 |
+
self.segment_len = sampling_rate
|
| 57 |
+
|
| 58 |
+
self.on_epoch_end()
|
| 59 |
+
|
| 60 |
+
def __len__(self):
|
| 61 |
+
"""Return number of batches per epoch"""
|
| 62 |
+
return len(self.clean_files) // self.batch_size
|
| 63 |
+
|
| 64 |
+
def __getitem__(self, index):
|
| 65 |
+
"""Generate one batch of data"""
|
| 66 |
+
# Select files for this batch
|
| 67 |
+
batch_indices = self.indices[
|
| 68 |
+
index * self.batch_size:(index + 1) * self.batch_size
|
| 69 |
+
]
|
| 70 |
+
|
| 71 |
+
batch_clean = []
|
| 72 |
+
batch_noisy = []
|
| 73 |
+
|
| 74 |
+
for idx in batch_indices:
|
| 75 |
+
clean_audio = self._load_audio(self.clean_files[idx])
|
| 76 |
+
noise_audio = self._load_random_noise()
|
| 77 |
+
|
| 78 |
+
# Mix clean and noise at random SNR
|
| 79 |
+
noisy_audio = self._mix_audio(clean_audio, noise_audio)
|
| 80 |
+
|
| 81 |
+
batch_clean.append(clean_audio)
|
| 82 |
+
batch_noisy.append(noisy_audio)
|
| 83 |
+
|
| 84 |
+
return np.array(batch_noisy), np.array(batch_clean)
|
| 85 |
+
|
| 86 |
+
def on_epoch_end(self):
|
| 87 |
+
"""Update indices after each epoch"""
|
| 88 |
+
self.indices = np.arange(len(self.clean_files))
|
| 89 |
+
if self.shuffle:
|
| 90 |
+
np.random.shuffle(self.indices)
|
| 91 |
+
|
| 92 |
+
def _load_audio(self, file_path):
|
| 93 |
+
"""Load and preprocess audio file"""
|
| 94 |
+
audio, sr = sf.read(file_path)
|
| 95 |
+
|
| 96 |
+
# Resample if needed
|
| 97 |
+
if sr != self.sampling_rate:
|
| 98 |
+
audio = librosa.resample(
|
| 99 |
+
audio,
|
| 100 |
+
orig_sr=sr,
|
| 101 |
+
target_sr=self.sampling_rate
|
| 102 |
+
)
|
| 103 |
+
|
| 104 |
+
# Convert to mono if stereo
|
| 105 |
+
if len(audio.shape) > 1:
|
| 106 |
+
audio = np.mean(audio, axis=1)
|
| 107 |
+
|
| 108 |
+
# Trim or pad to segment length
|
| 109 |
+
if len(audio) > self.segment_len:
|
| 110 |
+
start = np.random.randint(0, len(audio) - self.segment_len)
|
| 111 |
+
audio = audio[start:start + self.segment_len]
|
| 112 |
+
else:
|
| 113 |
+
audio = np.pad(audio, (0, self.segment_len - len(audio)))
|
| 114 |
+
|
| 115 |
+
# Normalize
|
| 116 |
+
audio = audio / (np.max(np.abs(audio)) + 1e-8)
|
| 117 |
+
|
| 118 |
+
return audio.astype(np.float32)
|
| 119 |
+
|
| 120 |
+
def _load_random_noise(self):
|
| 121 |
+
"""Load random noise file"""
|
| 122 |
+
noise_file = np.random.choice(self.noise_files)
|
| 123 |
+
return self._load_audio(noise_file)
|
| 124 |
+
|
| 125 |
+
def _mix_audio(self, clean, noise):
|
| 126 |
+
"""Mix clean audio with noise at random SNR"""
|
| 127 |
+
snr = np.random.uniform(*self.snr_range)
|
| 128 |
+
|
| 129 |
+
# Calculate noise power
|
| 130 |
+
clean_power = np.mean(clean ** 2)
|
| 131 |
+
noise_power = np.mean(noise ** 2)
|
| 132 |
+
|
| 133 |
+
# Calculate noise scaling factor
|
| 134 |
+
snr_linear = 10 ** (snr / 10)
|
| 135 |
+
noise_scale = np.sqrt(clean_power / (snr_linear * noise_power + 1e-8))
|
| 136 |
+
|
| 137 |
+
# Mix
|
| 138 |
+
noisy = clean + noise_scale * noise
|
| 139 |
+
|
| 140 |
+
# Normalize to prevent clipping
|
| 141 |
+
noisy = noisy / (np.max(np.abs(noisy)) + 1e-8) * 0.95
|
| 142 |
+
|
| 143 |
+
return noisy.astype(np.float32)
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
def apply_quantization_aware_training(model):
|
| 147 |
+
"""
|
| 148 |
+
Apply quantization-aware training for 8-bit deployment
|
| 149 |
+
|
| 150 |
+
Args:
|
| 151 |
+
model: Keras model to quantize
|
| 152 |
+
|
| 153 |
+
Returns:
|
| 154 |
+
Quantization-aware model
|
| 155 |
+
"""
|
| 156 |
+
# Quantize the entire model
|
| 157 |
+
quantize_model = tfmot.quantization.keras.quantize_model
|
| 158 |
+
|
| 159 |
+
# Use default quantization config
|
| 160 |
+
q_aware_model = quantize_model(model)
|
| 161 |
+
|
| 162 |
+
return q_aware_model
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
def create_loss_function():
|
| 166 |
+
"""
|
| 167 |
+
Create custom loss function combining time and frequency domain losses
|
| 168 |
+
"""
|
| 169 |
+
def combined_loss(y_true, y_pred):
|
| 170 |
+
# Time domain MSE
|
| 171 |
+
time_loss = tf.reduce_mean(tf.square(y_true - y_pred))
|
| 172 |
+
|
| 173 |
+
# Frequency domain loss (STFT-based)
|
| 174 |
+
stft_true = tf.signal.stft(
|
| 175 |
+
y_true,
|
| 176 |
+
frame_length=512,
|
| 177 |
+
frame_step=128
|
| 178 |
+
)
|
| 179 |
+
stft_pred = tf.signal.stft(
|
| 180 |
+
y_pred,
|
| 181 |
+
frame_length=512,
|
| 182 |
+
frame_step=128
|
| 183 |
+
)
|
| 184 |
+
|
| 185 |
+
mag_true = tf.abs(stft_true)
|
| 186 |
+
mag_pred = tf.abs(stft_pred)
|
| 187 |
+
|
| 188 |
+
freq_loss = tf.reduce_mean(tf.square(mag_true - mag_pred))
|
| 189 |
+
|
| 190 |
+
# Combined loss (weighted)
|
| 191 |
+
return 0.7 * time_loss + 0.3 * freq_loss
|
| 192 |
+
|
| 193 |
+
return combined_loss
|
| 194 |
+
|
| 195 |
+
|
| 196 |
+
def train_model(
|
| 197 |
+
clean_dir,
|
| 198 |
+
noise_dir,
|
| 199 |
+
output_dir='./models',
|
| 200 |
+
epochs=50,
|
| 201 |
+
batch_size=16,
|
| 202 |
+
lstm_units=128,
|
| 203 |
+
learning_rate=0.001,
|
| 204 |
+
use_qat=True
|
| 205 |
+
):
|
| 206 |
+
"""
|
| 207 |
+
Main training function
|
| 208 |
+
|
| 209 |
+
Args:
|
| 210 |
+
clean_dir: Directory with clean speech
|
| 211 |
+
noise_dir: Directory with noise files
|
| 212 |
+
output_dir: Directory to save models
|
| 213 |
+
epochs: Number of training epochs
|
| 214 |
+
batch_size: Training batch size
|
| 215 |
+
lstm_units: Number of LSTM units
|
| 216 |
+
learning_rate: Learning rate for Adam optimizer
|
| 217 |
+
use_qat: Whether to use quantization-aware training
|
| 218 |
+
"""
|
| 219 |
+
# Create output directory
|
| 220 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 221 |
+
|
| 222 |
+
print("="*60)
|
| 223 |
+
print("Training DTLN for Alif E7 Ethos-U55")
|
| 224 |
+
print("="*60)
|
| 225 |
+
|
| 226 |
+
# Create model
|
| 227 |
+
print("\n1. Building model...")
|
| 228 |
+
dtln = DTLN_Ethos_U55(
|
| 229 |
+
frame_len=512,
|
| 230 |
+
frame_shift=128,
|
| 231 |
+
lstm_units=lstm_units,
|
| 232 |
+
sampling_rate=16000
|
| 233 |
+
)
|
| 234 |
+
|
| 235 |
+
model = dtln.build_model()
|
| 236 |
+
model.summary()
|
| 237 |
+
|
| 238 |
+
# Apply QAT if requested
|
| 239 |
+
if use_qat:
|
| 240 |
+
print("\n2. Applying Quantization-Aware Training...")
|
| 241 |
+
model = apply_quantization_aware_training(model)
|
| 242 |
+
print(" ✓ QAT applied")
|
| 243 |
+
|
| 244 |
+
# Compile model
|
| 245 |
+
print("\n3. Compiling model...")
|
| 246 |
+
model.compile(
|
| 247 |
+
optimizer=tf.keras.optimizers.Adam(learning_rate=learning_rate),
|
| 248 |
+
loss=create_loss_function(),
|
| 249 |
+
metrics=['mae']
|
| 250 |
+
)
|
| 251 |
+
print(" ✓ Model compiled")
|
| 252 |
+
|
| 253 |
+
# Create data generators
|
| 254 |
+
print("\n4. Creating data generators...")
|
| 255 |
+
train_generator = AudioDataGenerator(
|
| 256 |
+
clean_audio_dir=clean_dir,
|
| 257 |
+
noise_audio_dir=noise_dir,
|
| 258 |
+
batch_size=batch_size,
|
| 259 |
+
frame_len=512,
|
| 260 |
+
frame_shift=128,
|
| 261 |
+
sampling_rate=16000,
|
| 262 |
+
snr_range=(0, 20),
|
| 263 |
+
shuffle=True
|
| 264 |
+
)
|
| 265 |
+
print(f" ✓ Training samples: {len(train_generator) * batch_size}")
|
| 266 |
+
|
| 267 |
+
# Callbacks
|
| 268 |
+
callbacks = [
|
| 269 |
+
tf.keras.callbacks.ModelCheckpoint(
|
| 270 |
+
filepath=os.path.join(output_dir, 'best_model.h5'),
|
| 271 |
+
monitor='loss',
|
| 272 |
+
save_best_only=True,
|
| 273 |
+
verbose=1
|
| 274 |
+
),
|
| 275 |
+
tf.keras.callbacks.ReduceLROnPlateau(
|
| 276 |
+
monitor='loss',
|
| 277 |
+
factor=0.5,
|
| 278 |
+
patience=5,
|
| 279 |
+
min_lr=1e-6,
|
| 280 |
+
verbose=1
|
| 281 |
+
),
|
| 282 |
+
tf.keras.callbacks.EarlyStopping(
|
| 283 |
+
monitor='loss',
|
| 284 |
+
patience=10,
|
| 285 |
+
restore_best_weights=True,
|
| 286 |
+
verbose=1
|
| 287 |
+
),
|
| 288 |
+
tf.keras.callbacks.TensorBoard(
|
| 289 |
+
log_dir=os.path.join(output_dir, 'logs'),
|
| 290 |
+
histogram_freq=1
|
| 291 |
+
)
|
| 292 |
+
]
|
| 293 |
+
|
| 294 |
+
# Train
|
| 295 |
+
print("\n5. Starting training...")
|
| 296 |
+
print("="*60)
|
| 297 |
+
history = model.fit(
|
| 298 |
+
train_generator,
|
| 299 |
+
epochs=epochs,
|
| 300 |
+
callbacks=callbacks,
|
| 301 |
+
verbose=1
|
| 302 |
+
)
|
| 303 |
+
|
| 304 |
+
# Save final model
|
| 305 |
+
final_model_path = os.path.join(
|
| 306 |
+
output_dir,
|
| 307 |
+
'dtln_ethos_u55_final.h5'
|
| 308 |
+
)
|
| 309 |
+
model.save(final_model_path)
|
| 310 |
+
print(f"\n✓ Training complete! Model saved to {final_model_path}")
|
| 311 |
+
|
| 312 |
+
return model, history
|
| 313 |
+
|
| 314 |
+
|
| 315 |
+
def train_with_pretrained_dtln(
|
| 316 |
+
pretrained_weights_path,
|
| 317 |
+
clean_dir,
|
| 318 |
+
noise_dir,
|
| 319 |
+
output_dir='./models',
|
| 320 |
+
epochs=20,
|
| 321 |
+
batch_size=16
|
| 322 |
+
):
|
| 323 |
+
"""
|
| 324 |
+
Fine-tune from pre-trained DTLN weights
|
| 325 |
+
|
| 326 |
+
Args:
|
| 327 |
+
pretrained_weights_path: Path to pretrained DTLN weights
|
| 328 |
+
clean_dir: Directory with clean speech
|
| 329 |
+
noise_dir: Directory with noise files
|
| 330 |
+
output_dir: Output directory
|
| 331 |
+
epochs: Number of fine-tuning epochs
|
| 332 |
+
batch_size: Training batch size
|
| 333 |
+
"""
|
| 334 |
+
print("Fine-tuning from pretrained DTLN weights...")
|
| 335 |
+
|
| 336 |
+
# Build model
|
| 337 |
+
dtln = DTLN_Ethos_U55(lstm_units=128)
|
| 338 |
+
model = dtln.build_model()
|
| 339 |
+
|
| 340 |
+
# Load pretrained weights (if architecture matches)
|
| 341 |
+
try:
|
| 342 |
+
model.load_weights(pretrained_weights_path, by_name=True)
|
| 343 |
+
print("✓ Pretrained weights loaded")
|
| 344 |
+
except:
|
| 345 |
+
print("⚠ Could not load pretrained weights, training from scratch")
|
| 346 |
+
|
| 347 |
+
# Continue training
|
| 348 |
+
return train_model(
|
| 349 |
+
clean_dir=clean_dir,
|
| 350 |
+
noise_dir=noise_dir,
|
| 351 |
+
output_dir=output_dir,
|
| 352 |
+
epochs=epochs,
|
| 353 |
+
batch_size=batch_size,
|
| 354 |
+
use_qat=True
|
| 355 |
+
)
|
| 356 |
+
|
| 357 |
+
|
| 358 |
+
if __name__ == "__main__":
|
| 359 |
+
parser = argparse.ArgumentParser(
|
| 360 |
+
description='Train DTLN model for Alif E7 Ethos-U55'
|
| 361 |
+
)
|
| 362 |
+
parser.add_argument(
|
| 363 |
+
'--clean-dir',
|
| 364 |
+
type=str,
|
| 365 |
+
required=True,
|
| 366 |
+
help='Directory containing clean speech files'
|
| 367 |
+
)
|
| 368 |
+
parser.add_argument(
|
| 369 |
+
'--noise-dir',
|
| 370 |
+
type=str,
|
| 371 |
+
required=True,
|
| 372 |
+
help='Directory containing noise files'
|
| 373 |
+
)
|
| 374 |
+
parser.add_argument(
|
| 375 |
+
'--output-dir',
|
| 376 |
+
type=str,
|
| 377 |
+
default='./models',
|
| 378 |
+
help='Output directory for models'
|
| 379 |
+
)
|
| 380 |
+
parser.add_argument(
|
| 381 |
+
'--epochs',
|
| 382 |
+
type=int,
|
| 383 |
+
default=50,
|
| 384 |
+
help='Number of training epochs'
|
| 385 |
+
)
|
| 386 |
+
parser.add_argument(
|
| 387 |
+
'--batch-size',
|
| 388 |
+
type=int,
|
| 389 |
+
default=16,
|
| 390 |
+
help='Training batch size'
|
| 391 |
+
)
|
| 392 |
+
parser.add_argument(
|
| 393 |
+
'--lstm-units',
|
| 394 |
+
type=int,
|
| 395 |
+
default=128,
|
| 396 |
+
help='Number of LSTM units'
|
| 397 |
+
)
|
| 398 |
+
parser.add_argument(
|
| 399 |
+
'--learning-rate',
|
| 400 |
+
type=float,
|
| 401 |
+
default=0.001,
|
| 402 |
+
help='Learning rate'
|
| 403 |
+
)
|
| 404 |
+
parser.add_argument(
|
| 405 |
+
'--no-qat',
|
| 406 |
+
action='store_true',
|
| 407 |
+
help='Disable quantization-aware training'
|
| 408 |
+
)
|
| 409 |
+
parser.add_argument(
|
| 410 |
+
'--pretrained',
|
| 411 |
+
type=str,
|
| 412 |
+
default=None,
|
| 413 |
+
help='Path to pretrained weights for fine-tuning'
|
| 414 |
+
)
|
| 415 |
+
|
| 416 |
+
args = parser.parse_args()
|
| 417 |
+
|
| 418 |
+
# Train model
|
| 419 |
+
if args.pretrained:
|
| 420 |
+
model, history = train_with_pretrained_dtln(
|
| 421 |
+
pretrained_weights_path=args.pretrained,
|
| 422 |
+
clean_dir=args.clean_dir,
|
| 423 |
+
noise_dir=args.noise_dir,
|
| 424 |
+
output_dir=args.output_dir,
|
| 425 |
+
epochs=args.epochs,
|
| 426 |
+
batch_size=args.batch_size
|
| 427 |
+
)
|
| 428 |
+
else:
|
| 429 |
+
model, history = train_model(
|
| 430 |
+
clean_dir=args.clean_dir,
|
| 431 |
+
noise_dir=args.noise_dir,
|
| 432 |
+
output_dir=args.output_dir,
|
| 433 |
+
epochs=args.epochs,
|
| 434 |
+
batch_size=args.batch_size,
|
| 435 |
+
lstm_units=args.lstm_units,
|
| 436 |
+
learning_rate=args.learning_rate,
|
| 437 |
+
use_qat=not args.no_qat
|
| 438 |
+
)
|
| 439 |
+
|
| 440 |
+
print("\n" + "="*60)
|
| 441 |
+
print("Training Summary:")
|
| 442 |
+
print(f" Final loss: {history.history['loss'][-1]:.4f}")
|
| 443 |
+
print(f" Best loss: {min(history.history['loss']):.4f}")
|
| 444 |
+
print(f" Model saved to: {args.output_dir}")
|
| 445 |
+
print("="*60)
|