grgsaliba commited on
Commit
0e7454e
Β·
verified Β·
1 Parent(s): 00e6ae1

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +45 -19
README.md CHANGED
@@ -76,40 +76,66 @@ Compatible with various edge AI accelerators including:
76
 
77
  Download the complete training and deployment code from the **Files** tab:
78
 
 
79
  - `dtln_ethos_u55.py` - Model architecture
80
- - `train_dtln.py` - Training script with quantization-aware training
 
81
  - `convert_to_tflite.py` - TFLite INT8 conversion
82
- - `alif_e7_voice_denoising_guide.md` - Complete deployment guide for edge devices
83
  - `example_usage.py` - Usage examples
84
- - `requirements.txt` - Python dependencies
 
 
 
 
 
 
 
85
 
86
  ## πŸ› οΈ Quick Start Guide
87
 
 
 
88
  ```bash
89
- # 1. Install dependencies
90
- pip install -r requirements.txt
91
 
92
- # 2. Train model
93
- python train_dtln.py \
94
- --clean-dir ./data/clean_speech \
95
- --noise-dir ./data/noise \
96
  --epochs 50 \
97
  --batch-size 16 \
 
98
  --lstm-units 128
99
 
100
  # 3. Convert to TFLite INT8
101
  python convert_to_tflite.py \
102
  --model ./models/best_model.h5 \
103
- --output ./models/dtln_ethos_u55.tflite \
104
- --calibration-dir ./data/clean_speech
105
-
106
- # 4. (Optional) Optimize for specific hardware accelerator
107
- # Example for Ethos-U55:
108
- vela \
109
- --accelerator-config ethos-u55-256 \
110
- --system-config Ethos_U55_High_End_Embedded \
111
- --memory-mode Shared_Sram \
112
- ./models/dtln_ethos_u55.tflite
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
113
  ```
114
 
115
  ## πŸ”§ Training Your Own Model
 
76
 
77
  Download the complete training and deployment code from the **Files** tab:
78
 
79
+ ### Core Files
80
  - `dtln_ethos_u55.py` - Model architecture
81
+ - `train_with_hf_datasets.py` - **NEW: Train with Hugging Face datasets (LibriSpeech, DNS Challenge, etc.)**
82
+ - `train_dtln.py` - Training script with local audio files
83
  - `convert_to_tflite.py` - TFLite INT8 conversion
 
84
  - `example_usage.py` - Usage examples
85
+
86
+ ### Documentation
87
+ - **`HF_TRAINING_GUIDE.md`** - **Complete guide for training with Hugging Face datasets**
88
+ - `alif_e7_voice_denoising_guide.md` - Edge device deployment guide
89
+
90
+ ### Requirements
91
+ - `training_requirements.txt` - Training dependencies (TensorFlow, datasets, etc.)
92
+ - `requirements.txt` - Demo app dependencies
93
 
94
  ## πŸ› οΈ Quick Start Guide
95
 
96
+ ### Option 1: Train with Hugging Face Datasets (Recommended)
97
+
98
  ```bash
99
+ # 1. Install training dependencies
100
+ pip install -r training_requirements.txt
101
 
102
+ # 2. Train with LibriSpeech + DNS Challenge (automatic download)
103
+ python train_with_hf_datasets.py \
 
 
104
  --epochs 50 \
105
  --batch-size 16 \
106
+ --samples-per-epoch 1000 \
107
  --lstm-units 128
108
 
109
  # 3. Convert to TFLite INT8
110
  python convert_to_tflite.py \
111
  --model ./models/best_model.h5 \
112
+ --output ./models/dtln_int8.tflite
113
+ ```
114
+
115
+ See **HF_TRAINING_GUIDE.md** for complete instructions with different datasets!
116
+
117
+ ### Option 2: Train with Local Audio Files
118
+
119
+ ```bash
120
+ # 1. Prepare your data
121
+ # data/
122
+ # β”œβ”€β”€ clean_speech/*.wav
123
+ # └── noise/*.wav
124
+
125
+ # 2. Install dependencies
126
+ pip install -r training_requirements.txt
127
+
128
+ # 3. Train model
129
+ python train_dtln.py \
130
+ --clean-dir ./data/clean_speech \
131
+ --noise-dir ./data/noise \
132
+ --epochs 50 \
133
+ --batch-size 16
134
+
135
+ # 4. Convert to TFLite
136
+ python convert_to_tflite.py \
137
+ --model ./models/best_model.h5 \
138
+ --output ./models/dtln_int8.tflite
139
  ```
140
 
141
  ## πŸ”§ Training Your Own Model