Spaces:
Running
Running
Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
|
@@ -4,7 +4,7 @@ emoji: 🎙️
|
|
| 4 |
colorFrom: blue
|
| 5 |
colorTo: green
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version:
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: mit
|
|
@@ -58,11 +58,18 @@ Compatible with various edge AI accelerators including:
|
|
| 58 |
|
| 59 |
## 💡 How to Use This Demo
|
| 60 |
|
|
|
|
| 61 |
1. **Upload Audio**: Click "Upload Noisy Audio" or use your microphone
|
| 62 |
2. **Adjust Settings**: Set noise reduction strength (0-20 dB)
|
| 63 |
3. **Process**: Click "Denoise Audio" to enhance your audio
|
| 64 |
4. **Try Demo**: Click "Try Demo Audio" to test with synthetic audio
|
| 65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
⚠️ **Note**: This demo uses spectral subtraction for demonstration purposes. The actual DTLN model provides superior quality when trained. Download the full implementation below!
|
| 67 |
|
| 68 |
## 📦 Full Implementation
|
|
|
|
| 4 |
colorFrom: blue
|
| 5 |
colorTo: green
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 5.49.1
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: mit
|
|
|
|
| 58 |
|
| 59 |
## 💡 How to Use This Demo
|
| 60 |
|
| 61 |
+
### Demo Tab
|
| 62 |
1. **Upload Audio**: Click "Upload Noisy Audio" or use your microphone
|
| 63 |
2. **Adjust Settings**: Set noise reduction strength (0-20 dB)
|
| 64 |
3. **Process**: Click "Denoise Audio" to enhance your audio
|
| 65 |
4. **Try Demo**: Click "Try Demo Audio" to test with synthetic audio
|
| 66 |
|
| 67 |
+
### Training Tab
|
| 68 |
+
1. **Prepare Datasets**: Upload ZIP files containing clean speech and noise WAV files
|
| 69 |
+
2. **Configure Parameters**: Set epochs, batch size, and LSTM units
|
| 70 |
+
3. **Get Instructions**: Click "Prepare Training" to get customized training commands
|
| 71 |
+
4. **Train Locally**: Follow the instructions to train on your own machine or GPU instance
|
| 72 |
+
|
| 73 |
⚠️ **Note**: This demo uses spectral subtraction for demonstration purposes. The actual DTLN model provides superior quality when trained. Download the full implementation below!
|
| 74 |
|
| 75 |
## 📦 Full Implementation
|