grgsaliba commited on
Commit
00e6ae1
·
verified ·
1 Parent(s): b2d3e7f

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +8 -1
README.md CHANGED
@@ -4,7 +4,7 @@ emoji: 🎙️
4
  colorFrom: blue
5
  colorTo: green
6
  sdk: gradio
7
- sdk_version: 4.19.0
8
  app_file: app.py
9
  pinned: false
10
  license: mit
@@ -58,11 +58,18 @@ Compatible with various edge AI accelerators including:
58
 
59
  ## 💡 How to Use This Demo
60
 
 
61
  1. **Upload Audio**: Click "Upload Noisy Audio" or use your microphone
62
  2. **Adjust Settings**: Set noise reduction strength (0-20 dB)
63
  3. **Process**: Click "Denoise Audio" to enhance your audio
64
  4. **Try Demo**: Click "Try Demo Audio" to test with synthetic audio
65
 
 
 
 
 
 
 
66
  ⚠️ **Note**: This demo uses spectral subtraction for demonstration purposes. The actual DTLN model provides superior quality when trained. Download the full implementation below!
67
 
68
  ## 📦 Full Implementation
 
4
  colorFrom: blue
5
  colorTo: green
6
  sdk: gradio
7
+ sdk_version: 5.49.1
8
  app_file: app.py
9
  pinned: false
10
  license: mit
 
58
 
59
  ## 💡 How to Use This Demo
60
 
61
+ ### Demo Tab
62
  1. **Upload Audio**: Click "Upload Noisy Audio" or use your microphone
63
  2. **Adjust Settings**: Set noise reduction strength (0-20 dB)
64
  3. **Process**: Click "Denoise Audio" to enhance your audio
65
  4. **Try Demo**: Click "Try Demo Audio" to test with synthetic audio
66
 
67
+ ### Training Tab
68
+ 1. **Prepare Datasets**: Upload ZIP files containing clean speech and noise WAV files
69
+ 2. **Configure Parameters**: Set epochs, batch size, and LSTM units
70
+ 3. **Get Instructions**: Click "Prepare Training" to get customized training commands
71
+ 4. **Train Locally**: Follow the instructions to train on your own machine or GPU instance
72
+
73
  ⚠️ **Note**: This demo uses spectral subtraction for demonstration purposes. The actual DTLN model provides superior quality when trained. Download the full implementation below!
74
 
75
  ## 📦 Full Implementation