Spaces:
Sleeping
Sleeping
File size: 12,508 Bytes
e5d5706 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 |
"""
Training script for DTLN model with Quantization-Aware Training (QAT)
Optimized for deployment on Alif E7 Ethos-U55 NPU
"""
import tensorflow as tf
import tensorflow_model_optimization as tfmot
import numpy as np
import soundfile as sf
import librosa
from pathlib import Path
import argparse
from dtln_ethos_u55 import DTLN_Ethos_U55
import os
class AudioDataGenerator(tf.keras.utils.Sequence):
"""
Data generator for training audio denoising models
Loads clean and noisy audio pairs
"""
def __init__(
self,
clean_audio_dir,
noise_audio_dir,
batch_size=16,
frame_len=512,
frame_shift=128,
sampling_rate=16000,
snr_range=(0, 20),
shuffle=True
):
"""
Args:
clean_audio_dir: Directory containing clean speech files
noise_audio_dir: Directory containing noise files
batch_size: Batch size for training
frame_len: Frame length in samples
frame_shift: Frame shift in samples
sampling_rate: Target sampling rate
snr_range: Range of SNR for mixing (min, max) in dB
shuffle: Whether to shuffle data each epoch
"""
self.clean_files = list(Path(clean_audio_dir).glob('**/*.wav'))
self.noise_files = list(Path(noise_audio_dir).glob('**/*.wav'))
self.batch_size = batch_size
self.frame_len = frame_len
self.frame_shift = frame_shift
self.sampling_rate = sampling_rate
self.snr_range = snr_range
self.shuffle = shuffle
# Segment length for training (1 second)
self.segment_len = sampling_rate
self.on_epoch_end()
def __len__(self):
"""Return number of batches per epoch"""
return len(self.clean_files) // self.batch_size
def __getitem__(self, index):
"""Generate one batch of data"""
# Select files for this batch
batch_indices = self.indices[
index * self.batch_size:(index + 1) * self.batch_size
]
batch_clean = []
batch_noisy = []
for idx in batch_indices:
clean_audio = self._load_audio(self.clean_files[idx])
noise_audio = self._load_random_noise()
# Mix clean and noise at random SNR
noisy_audio = self._mix_audio(clean_audio, noise_audio)
batch_clean.append(clean_audio)
batch_noisy.append(noisy_audio)
return np.array(batch_noisy), np.array(batch_clean)
def on_epoch_end(self):
"""Update indices after each epoch"""
self.indices = np.arange(len(self.clean_files))
if self.shuffle:
np.random.shuffle(self.indices)
def _load_audio(self, file_path):
"""Load and preprocess audio file"""
audio, sr = sf.read(file_path)
# Resample if needed
if sr != self.sampling_rate:
audio = librosa.resample(
audio,
orig_sr=sr,
target_sr=self.sampling_rate
)
# Convert to mono if stereo
if len(audio.shape) > 1:
audio = np.mean(audio, axis=1)
# Trim or pad to segment length
if len(audio) > self.segment_len:
start = np.random.randint(0, len(audio) - self.segment_len)
audio = audio[start:start + self.segment_len]
else:
audio = np.pad(audio, (0, self.segment_len - len(audio)))
# Normalize
audio = audio / (np.max(np.abs(audio)) + 1e-8)
return audio.astype(np.float32)
def _load_random_noise(self):
"""Load random noise file"""
noise_file = np.random.choice(self.noise_files)
return self._load_audio(noise_file)
def _mix_audio(self, clean, noise):
"""Mix clean audio with noise at random SNR"""
snr = np.random.uniform(*self.snr_range)
# Calculate noise power
clean_power = np.mean(clean ** 2)
noise_power = np.mean(noise ** 2)
# Calculate noise scaling factor
snr_linear = 10 ** (snr / 10)
noise_scale = np.sqrt(clean_power / (snr_linear * noise_power + 1e-8))
# Mix
noisy = clean + noise_scale * noise
# Normalize to prevent clipping
noisy = noisy / (np.max(np.abs(noisy)) + 1e-8) * 0.95
return noisy.astype(np.float32)
def apply_quantization_aware_training(model):
"""
Apply quantization-aware training for 8-bit deployment
Args:
model: Keras model to quantize
Returns:
Quantization-aware model
"""
# Quantize the entire model
quantize_model = tfmot.quantization.keras.quantize_model
# Use default quantization config
q_aware_model = quantize_model(model)
return q_aware_model
def create_loss_function():
"""
Create custom loss function combining time and frequency domain losses
"""
def combined_loss(y_true, y_pred):
# Time domain MSE
time_loss = tf.reduce_mean(tf.square(y_true - y_pred))
# Frequency domain loss (STFT-based)
stft_true = tf.signal.stft(
y_true,
frame_length=512,
frame_step=128
)
stft_pred = tf.signal.stft(
y_pred,
frame_length=512,
frame_step=128
)
mag_true = tf.abs(stft_true)
mag_pred = tf.abs(stft_pred)
freq_loss = tf.reduce_mean(tf.square(mag_true - mag_pred))
# Combined loss (weighted)
return 0.7 * time_loss + 0.3 * freq_loss
return combined_loss
def train_model(
clean_dir,
noise_dir,
output_dir='./models',
epochs=50,
batch_size=16,
lstm_units=128,
learning_rate=0.001,
use_qat=True
):
"""
Main training function
Args:
clean_dir: Directory with clean speech
noise_dir: Directory with noise files
output_dir: Directory to save models
epochs: Number of training epochs
batch_size: Training batch size
lstm_units: Number of LSTM units
learning_rate: Learning rate for Adam optimizer
use_qat: Whether to use quantization-aware training
"""
# Create output directory
os.makedirs(output_dir, exist_ok=True)
print("="*60)
print("Training DTLN for Alif E7 Ethos-U55")
print("="*60)
# Create model
print("\n1. Building model...")
dtln = DTLN_Ethos_U55(
frame_len=512,
frame_shift=128,
lstm_units=lstm_units,
sampling_rate=16000
)
model = dtln.build_model()
model.summary()
# Apply QAT if requested
if use_qat:
print("\n2. Applying Quantization-Aware Training...")
model = apply_quantization_aware_training(model)
print(" β QAT applied")
# Compile model
print("\n3. Compiling model...")
model.compile(
optimizer=tf.keras.optimizers.Adam(learning_rate=learning_rate),
loss=create_loss_function(),
metrics=['mae']
)
print(" β Model compiled")
# Create data generators
print("\n4. Creating data generators...")
train_generator = AudioDataGenerator(
clean_audio_dir=clean_dir,
noise_audio_dir=noise_dir,
batch_size=batch_size,
frame_len=512,
frame_shift=128,
sampling_rate=16000,
snr_range=(0, 20),
shuffle=True
)
print(f" β Training samples: {len(train_generator) * batch_size}")
# Callbacks
callbacks = [
tf.keras.callbacks.ModelCheckpoint(
filepath=os.path.join(output_dir, 'best_model.h5'),
monitor='loss',
save_best_only=True,
verbose=1
),
tf.keras.callbacks.ReduceLROnPlateau(
monitor='loss',
factor=0.5,
patience=5,
min_lr=1e-6,
verbose=1
),
tf.keras.callbacks.EarlyStopping(
monitor='loss',
patience=10,
restore_best_weights=True,
verbose=1
),
tf.keras.callbacks.TensorBoard(
log_dir=os.path.join(output_dir, 'logs'),
histogram_freq=1
)
]
# Train
print("\n5. Starting training...")
print("="*60)
history = model.fit(
train_generator,
epochs=epochs,
callbacks=callbacks,
verbose=1
)
# Save final model
final_model_path = os.path.join(
output_dir,
'dtln_ethos_u55_final.h5'
)
model.save(final_model_path)
print(f"\nβ Training complete! Model saved to {final_model_path}")
return model, history
def train_with_pretrained_dtln(
pretrained_weights_path,
clean_dir,
noise_dir,
output_dir='./models',
epochs=20,
batch_size=16
):
"""
Fine-tune from pre-trained DTLN weights
Args:
pretrained_weights_path: Path to pretrained DTLN weights
clean_dir: Directory with clean speech
noise_dir: Directory with noise files
output_dir: Output directory
epochs: Number of fine-tuning epochs
batch_size: Training batch size
"""
print("Fine-tuning from pretrained DTLN weights...")
# Build model
dtln = DTLN_Ethos_U55(lstm_units=128)
model = dtln.build_model()
# Load pretrained weights (if architecture matches)
try:
model.load_weights(pretrained_weights_path, by_name=True)
print("β Pretrained weights loaded")
except:
print("β Could not load pretrained weights, training from scratch")
# Continue training
return train_model(
clean_dir=clean_dir,
noise_dir=noise_dir,
output_dir=output_dir,
epochs=epochs,
batch_size=batch_size,
use_qat=True
)
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description='Train DTLN model for Alif E7 Ethos-U55'
)
parser.add_argument(
'--clean-dir',
type=str,
required=True,
help='Directory containing clean speech files'
)
parser.add_argument(
'--noise-dir',
type=str,
required=True,
help='Directory containing noise files'
)
parser.add_argument(
'--output-dir',
type=str,
default='./models',
help='Output directory for models'
)
parser.add_argument(
'--epochs',
type=int,
default=50,
help='Number of training epochs'
)
parser.add_argument(
'--batch-size',
type=int,
default=16,
help='Training batch size'
)
parser.add_argument(
'--lstm-units',
type=int,
default=128,
help='Number of LSTM units'
)
parser.add_argument(
'--learning-rate',
type=float,
default=0.001,
help='Learning rate'
)
parser.add_argument(
'--no-qat',
action='store_true',
help='Disable quantization-aware training'
)
parser.add_argument(
'--pretrained',
type=str,
default=None,
help='Path to pretrained weights for fine-tuning'
)
args = parser.parse_args()
# Train model
if args.pretrained:
model, history = train_with_pretrained_dtln(
pretrained_weights_path=args.pretrained,
clean_dir=args.clean_dir,
noise_dir=args.noise_dir,
output_dir=args.output_dir,
epochs=args.epochs,
batch_size=args.batch_size
)
else:
model, history = train_model(
clean_dir=args.clean_dir,
noise_dir=args.noise_dir,
output_dir=args.output_dir,
epochs=args.epochs,
batch_size=args.batch_size,
lstm_units=args.lstm_units,
learning_rate=args.learning_rate,
use_qat=not args.no_qat
)
print("\n" + "="*60)
print("Training Summary:")
print(f" Final loss: {history.history['loss'][-1]:.4f}")
print(f" Best loss: {min(history.history['loss']):.4f}")
print(f" Model saved to: {args.output_dir}")
print("="*60)
|