Spaces:
Sleeping
Sleeping
File size: 12,419 Bytes
b6c9ef9 9e750ac b6c9ef9 9e750ac b6c9ef9 9e750ac b6c9ef9 9e750ac b6c9ef9 13c8aa5 b6c9ef9 9e750ac b6c9ef9 9e750ac b6c9ef9 9e750ac b6c9ef9 9e750ac b6c9ef9 9e750ac b6c9ef9 9e750ac b6c9ef9 9e750ac b6c9ef9 08b14e1 b6c9ef9 08b14e1 b6c9ef9 08b14e1 b6c9ef9 9e750ac b6c9ef9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 |
"""
Hugging Face Space: DTLN Voice Denoising
Real-time speech denoising optimized for edge deployment
"""
import gradio as gr
import numpy as np
import soundfile as sf
import tempfile
import os
from scipy import signal
# Note: In production, you would load a trained model
# For this demo, we'll use a simple spectral subtraction approach
def spectral_subtraction_denoise(audio, sample_rate, noise_reduction_db=10):
"""
Simple spectral subtraction for demonstration
In production, this would use the trained DTLN model
Args:
audio: Input audio array
sample_rate: Sampling rate
noise_reduction_db: Amount of noise reduction in dB
Returns:
Denoised audio array
"""
# Compute STFT
f, t, Zxx = signal.stft(audio, fs=sample_rate, nperseg=512)
# Estimate noise from first 0.3 seconds
noise_frames = int(0.3 * len(t))
noise_estimate = np.mean(np.abs(Zxx[:, :noise_frames]), axis=1, keepdims=True)
# Spectral subtraction
magnitude = np.abs(Zxx)
phase = np.angle(Zxx)
# Subtract noise estimate (with floor)
alpha = 10 ** (noise_reduction_db / 20)
magnitude_cleaned = np.maximum(magnitude - alpha * noise_estimate, 0.1 * magnitude)
# Reconstruct complex spectrum
Zxx_cleaned = magnitude_cleaned * np.exp(1j * phase)
# Inverse STFT
_, audio_cleaned = signal.istft(Zxx_cleaned, fs=sample_rate)
# Normalize
audio_cleaned = audio_cleaned / (np.max(np.abs(audio_cleaned)) + 1e-8) * 0.95
return audio_cleaned
def process_audio(audio_file, noise_reduction):
"""
Process uploaded audio file
Args:
audio_file: Path to uploaded audio file
noise_reduction: Noise reduction strength (0-20 dB)
Returns:
Tuple of (sample_rate, denoised_audio)
"""
if audio_file is None:
return None, "Please upload an audio file"
try:
# Load audio
audio, sample_rate = sf.read(audio_file)
# Convert to mono if stereo
if len(audio.shape) > 1:
audio = np.mean(audio, axis=1)
# Resample to 16kHz if needed (DTLN's native sample rate)
if sample_rate != 16000:
from scipy.signal import resample
num_samples = int(len(audio) * 16000 / sample_rate)
audio = resample(audio, num_samples)
sample_rate = 16000
# Normalize input
audio = audio / (np.max(np.abs(audio)) + 1e-8) * 0.95
# Apply denoising
# Note: In production, this would use the trained DTLN model
denoised = spectral_subtraction_denoise(audio, sample_rate, noise_reduction)
# Calculate improvement metrics
noise = audio - denoised
signal_power = np.mean(audio ** 2)
noise_power = np.mean(noise ** 2)
snr_improvement = 10 * np.log10(signal_power / (noise_power + 1e-10))
info = f"""
β
Processing Complete!
π Audio Info:
- Duration: {len(audio)/sample_rate:.2f}s
- Sample Rate: {sample_rate} Hz
- Length: {len(audio):,} samples
π Quality Metrics:
- SNR Improvement: {snr_improvement:.2f} dB
- Noise Reduction: {noise_reduction} dB
β οΈ Note: This demo uses spectral subtraction for demonstration.
The actual DTLN model provides superior quality when trained!
"""
return (sample_rate, denoised.astype(np.float32)), info
except Exception as e:
return None, f"β Error processing audio: {str(e)}"
def generate_demo_audio():
"""Generate demo noisy audio"""
sample_rate = 16000
duration = 3.0
t = np.linspace(0, duration, int(duration * sample_rate))
# Generate synthetic speech
speech = (
0.3 * np.sin(2 * np.pi * 200 * t) +
0.2 * np.sin(2 * np.pi * 400 * t) +
0.15 * np.sin(2 * np.pi * 600 * t)
)
# Add speech-like envelope
envelope = 0.5 + 0.5 * np.sin(2 * np.pi * 2 * t)
speech = speech * envelope
# Add noise
noise = np.random.randn(len(t)) * 0.2
noisy = speech + noise
# Normalize
noisy = noisy / (np.max(np.abs(noisy)) + 1e-8) * 0.95
# Save to temporary file
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.wav')
sf.write(temp_file.name, noisy.astype(np.float32), sample_rate)
return temp_file.name
# Custom CSS
custom_css = """
.gradio-container {
font-family: 'IBM Plex Sans', sans-serif;
}
.gr-button {
background: linear-gradient(90deg, #4CAF50, #45a049);
border: none;
}
.gr-button:hover {
background: linear-gradient(90deg, #45a049, #4CAF50);
}
#component-0 {
max-width: 900px;
margin: auto;
padding: 20px;
}
"""
# Build Gradio interface
with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# ποΈ DTLN Voice Denoising
Real-time speech enhancement optimized for edge deployment with **TensorFlow Lite**.
### π Features:
- **Optimized for Edge AI**: Lightweight model with <100KB size
- **Real-time Processing**: Low latency for streaming audio
- **INT8 Quantization**: Efficient deployment with 8-bit precision
- **TensorFlow Lite**: Ready for microcontroller deployment
---
""")
with gr.Row():
with gr.Column():
gr.Markdown("### π€ Input")
audio_input = gr.Audio(
label="Upload Noisy Audio",
type="filepath",
sources=["upload", "microphone"]
)
noise_reduction = gr.Slider(
minimum=0,
maximum=20,
value=10,
step=1,
label="Noise Reduction Strength (dB)",
info="Higher values remove more noise but may affect speech quality"
)
with gr.Row():
process_btn = gr.Button("π Denoise Audio", variant="primary", size="lg")
demo_btn = gr.Button("π΅ Try Demo Audio", variant="secondary")
with gr.Column():
gr.Markdown("### π₯ Output")
audio_output = gr.Audio(
label="Denoised Audio",
type="numpy"
)
info_output = gr.Textbox(
label="Processing Info",
lines=12,
max_lines=12
)
# About section
with gr.Accordion("π About This Model", open=False):
gr.Markdown("""
### DTLN Architecture
**Dual-signal Transformation LSTM Network** is a real-time speech enhancement model:
- **Two-stage processing**: Magnitude estimation β Final enhancement
- **LSTM-based**: Captures temporal dependencies in speech
- **<1M parameters**: Lightweight for edge deployment
- **Frequency + Time domain**: Processes both domains for better quality
### Edge Hardware Acceleration
Compatible with various edge AI accelerators:
- **NPU**: Arm Ethos-U series
- **CPU**: ARM Cortex-M series
- **Quantization**: 8-bit and 16-bit integer operations
- **Memory**: Optimized for constrained devices
### Performance Targets
| Metric | Value |
|--------|-------|
| Model Size | ~100 KB (INT8) |
| Latency | 3-6 ms |
| Power | 30-40 mW |
| SNR Improvement | 10-15 dB |
---
β οΈ **Demo Note**: This Space uses spectral subtraction for demonstration.
Download the full implementation to train and deploy the actual DTLN model!
""")
# Training guide section
with gr.Accordion("π οΈ Training & Deployment Guide", open=False):
gr.Markdown("""
### Quick Start
```bash
# 1. Install dependencies
pip install -r requirements.txt
# 2. Train model
python train_dtln.py \\
--clean-dir ./data/clean_speech \\
--noise-dir ./data/noise \\
--epochs 50 \\
--batch-size 16
# 3. Convert to TFLite INT8
python convert_to_tflite.py \\
--model ./models/best_model.h5 \\
--output ./models/dtln_ethos_u55.tflite \\
--calibration-dir ./data/clean_speech
# 4. (Optional) Optimize for hardware accelerator
vela --accelerator-config ethos-u55-256 \\
--system-config Ethos_U55_High_End_Embedded \\
./models/dtln_ethos_u55.tflite
```
### Download Full Implementation
The complete training and deployment code is available in the Files tab β
Includes:
- `dtln_ethos_u55.py` - Model architecture
- `train_dtln.py` - Training with QAT
- `convert_to_tflite.py` - TFLite conversion
- `alif_e7_voice_denoising_guide.md` - Complete guide
- `example_usage.py` - Usage examples
### Resources
- [TensorFlow Lite Micro](https://www.tensorflow.org/lite/microcontrollers)
- [Arm Ethos-U NPU](https://developer.arm.com/ip-products/processors/machine-learning/arm-ethos-u)
- [DTLN Paper (Interspeech 2020)](https://arxiv.org/abs/2005.07551)
""")
# Tech specs section
with gr.Accordion("βοΈ Technical Specifications", open=False):
gr.Markdown("""
### Model Architecture Details
**Input**: Raw audio waveform @ 16kHz
- Frame length: 512 samples (32ms)
- Frame shift: 128 samples (8ms)
- Frequency bins: 257 (FFT size 512)
**Network Structure**:
```
Input Audio (16kHz)
β
STFT (512-point)
β
[Stage 1]
LSTM (128 units) β Dense (sigmoid) β Magnitude Mask 1
β
Enhanced Magnitude 1
β
[Stage 2]
LSTM (128 units) β Dense (sigmoid) β Magnitude Mask 2
β
Enhanced Magnitude
β
ISTFT
β
Output Audio (16kHz)
```
**Training Configuration**:
- Loss: Combined time + frequency domain MSE
- Optimizer: Adam (lr=0.001)
- Batch size: 16
- Epochs: 50
- Quantization: INT8 post-training quantization
**Memory Footprint**:
- Model weights: ~80 KB (INT8)
- Tensor arena: ~100 KB
- Audio buffers: ~2 KB
- **Total**: ~200 KB
### Edge Device Deployment
**Hardware Utilization**:
- NPU/CPU: For LSTM inference
- CPU: For FFT operations (CMSIS-DSP)
- Memory: Optimized buffer management
- Peripherals: I2S/PDM for audio I/O
**Power Profile**:
- Active inference: 30-40 mW
- Idle: <1 mW
- Average (50% duty): ~15-20 mW
**Real-time Constraints**:
- Frame processing: 8ms available
- FFT: ~1ms
- NPU inference: ~4ms
- IFFT + overhead: ~2ms
- **Margin**: ~1ms
""")
# Event handlers
process_btn.click(
fn=process_audio,
inputs=[audio_input, noise_reduction],
outputs=[audio_output, info_output],
api_name="denoise"
)
demo_btn.click(
fn=generate_demo_audio,
inputs=[],
outputs=[audio_input],
api_name="demo"
)
# Footer
gr.Markdown("""
---
### π Citation
If you use this model in your research, please cite:
```bibtex
@inproceedings{westhausen2020dtln,
title={Dual-signal transformation LSTM network for real-time noise suppression},
author={Westhausen, Nils L and Meyer, Bernd T},
booktitle={Interspeech},
year={2020}
}
```
---
<div style="text-align: center; color: #666;">
Built for <b>Edge AI</b> β’ Optimized for <b>Microcontrollers</b> β’
<a href="https://github.com/breizhn/DTLN">Original DTLN</a>
</div>
""")
# Launch configuration
if __name__ == "__main__":
demo.launch()
|