Spaces:
Sleeping
Sleeping
Upload app.py with huggingface_hub
Browse files
app.py
ADDED
|
@@ -0,0 +1,408 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Hugging Face Space: DTLN Voice Denoising for Alif E7 NPU
|
| 3 |
+
Real-time speech denoising optimized for edge deployment
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import gradio as gr
|
| 7 |
+
import numpy as np
|
| 8 |
+
import soundfile as sf
|
| 9 |
+
import tempfile
|
| 10 |
+
import os
|
| 11 |
+
from scipy import signal
|
| 12 |
+
|
| 13 |
+
# Note: In production, you would load a trained model
|
| 14 |
+
# For this demo, we'll use a simple spectral subtraction approach
|
| 15 |
+
|
| 16 |
+
def spectral_subtraction_denoise(audio, sample_rate, noise_reduction_db=10):
|
| 17 |
+
"""
|
| 18 |
+
Simple spectral subtraction for demonstration
|
| 19 |
+
In production, this would use the trained DTLN model
|
| 20 |
+
|
| 21 |
+
Args:
|
| 22 |
+
audio: Input audio array
|
| 23 |
+
sample_rate: Sampling rate
|
| 24 |
+
noise_reduction_db: Amount of noise reduction in dB
|
| 25 |
+
|
| 26 |
+
Returns:
|
| 27 |
+
Denoised audio array
|
| 28 |
+
"""
|
| 29 |
+
# Compute STFT
|
| 30 |
+
f, t, Zxx = signal.stft(audio, fs=sample_rate, nperseg=512)
|
| 31 |
+
|
| 32 |
+
# Estimate noise from first 0.3 seconds
|
| 33 |
+
noise_frames = int(0.3 * len(t))
|
| 34 |
+
noise_estimate = np.mean(np.abs(Zxx[:, :noise_frames]), axis=1, keepdims=True)
|
| 35 |
+
|
| 36 |
+
# Spectral subtraction
|
| 37 |
+
magnitude = np.abs(Zxx)
|
| 38 |
+
phase = np.angle(Zxx)
|
| 39 |
+
|
| 40 |
+
# Subtract noise estimate (with floor)
|
| 41 |
+
alpha = 10 ** (noise_reduction_db / 20)
|
| 42 |
+
magnitude_cleaned = np.maximum(magnitude - alpha * noise_estimate, 0.1 * magnitude)
|
| 43 |
+
|
| 44 |
+
# Reconstruct complex spectrum
|
| 45 |
+
Zxx_cleaned = magnitude_cleaned * np.exp(1j * phase)
|
| 46 |
+
|
| 47 |
+
# Inverse STFT
|
| 48 |
+
_, audio_cleaned = signal.istft(Zxx_cleaned, fs=sample_rate)
|
| 49 |
+
|
| 50 |
+
# Normalize
|
| 51 |
+
audio_cleaned = audio_cleaned / (np.max(np.abs(audio_cleaned)) + 1e-8) * 0.95
|
| 52 |
+
|
| 53 |
+
return audio_cleaned
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
def process_audio(audio_file, noise_reduction):
|
| 57 |
+
"""
|
| 58 |
+
Process uploaded audio file
|
| 59 |
+
|
| 60 |
+
Args:
|
| 61 |
+
audio_file: Path to uploaded audio file
|
| 62 |
+
noise_reduction: Noise reduction strength (0-20 dB)
|
| 63 |
+
|
| 64 |
+
Returns:
|
| 65 |
+
Tuple of (sample_rate, denoised_audio)
|
| 66 |
+
"""
|
| 67 |
+
if audio_file is None:
|
| 68 |
+
return None, "Please upload an audio file"
|
| 69 |
+
|
| 70 |
+
try:
|
| 71 |
+
# Load audio
|
| 72 |
+
audio, sample_rate = sf.read(audio_file)
|
| 73 |
+
|
| 74 |
+
# Convert to mono if stereo
|
| 75 |
+
if len(audio.shape) > 1:
|
| 76 |
+
audio = np.mean(audio, axis=1)
|
| 77 |
+
|
| 78 |
+
# Resample to 16kHz if needed (DTLN's native sample rate)
|
| 79 |
+
if sample_rate != 16000:
|
| 80 |
+
from scipy.signal import resample
|
| 81 |
+
num_samples = int(len(audio) * 16000 / sample_rate)
|
| 82 |
+
audio = resample(audio, num_samples)
|
| 83 |
+
sample_rate = 16000
|
| 84 |
+
|
| 85 |
+
# Normalize input
|
| 86 |
+
audio = audio / (np.max(np.abs(audio)) + 1e-8) * 0.95
|
| 87 |
+
|
| 88 |
+
# Apply denoising
|
| 89 |
+
# Note: In production, this would use the trained DTLN model
|
| 90 |
+
denoised = spectral_subtraction_denoise(audio, sample_rate, noise_reduction)
|
| 91 |
+
|
| 92 |
+
# Calculate improvement metrics
|
| 93 |
+
noise = audio - denoised
|
| 94 |
+
signal_power = np.mean(audio ** 2)
|
| 95 |
+
noise_power = np.mean(noise ** 2)
|
| 96 |
+
snr_improvement = 10 * np.log10(signal_power / (noise_power + 1e-10))
|
| 97 |
+
|
| 98 |
+
info = f"""
|
| 99 |
+
β
Processing Complete!
|
| 100 |
+
|
| 101 |
+
π Audio Info:
|
| 102 |
+
- Duration: {len(audio)/sample_rate:.2f}s
|
| 103 |
+
- Sample Rate: {sample_rate} Hz
|
| 104 |
+
- Length: {len(audio):,} samples
|
| 105 |
+
|
| 106 |
+
π Quality Metrics:
|
| 107 |
+
- SNR Improvement: {snr_improvement:.2f} dB
|
| 108 |
+
- Noise Reduction: {noise_reduction} dB
|
| 109 |
+
|
| 110 |
+
β οΈ Note: This demo uses spectral subtraction for demonstration.
|
| 111 |
+
The actual DTLN model provides superior quality when trained!
|
| 112 |
+
"""
|
| 113 |
+
|
| 114 |
+
return (sample_rate, denoised.astype(np.float32)), info
|
| 115 |
+
|
| 116 |
+
except Exception as e:
|
| 117 |
+
return None, f"β Error processing audio: {str(e)}"
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
def generate_demo_audio():
|
| 121 |
+
"""Generate demo noisy audio"""
|
| 122 |
+
sample_rate = 16000
|
| 123 |
+
duration = 3.0
|
| 124 |
+
t = np.linspace(0, duration, int(duration * sample_rate))
|
| 125 |
+
|
| 126 |
+
# Generate synthetic speech
|
| 127 |
+
speech = (
|
| 128 |
+
0.3 * np.sin(2 * np.pi * 200 * t) +
|
| 129 |
+
0.2 * np.sin(2 * np.pi * 400 * t) +
|
| 130 |
+
0.15 * np.sin(2 * np.pi * 600 * t)
|
| 131 |
+
)
|
| 132 |
+
|
| 133 |
+
# Add speech-like envelope
|
| 134 |
+
envelope = 0.5 + 0.5 * np.sin(2 * np.pi * 2 * t)
|
| 135 |
+
speech = speech * envelope
|
| 136 |
+
|
| 137 |
+
# Add noise
|
| 138 |
+
noise = np.random.randn(len(t)) * 0.2
|
| 139 |
+
noisy = speech + noise
|
| 140 |
+
|
| 141 |
+
# Normalize
|
| 142 |
+
noisy = noisy / (np.max(np.abs(noisy)) + 1e-8) * 0.95
|
| 143 |
+
|
| 144 |
+
# Save to temporary file
|
| 145 |
+
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.wav')
|
| 146 |
+
sf.write(temp_file.name, noisy.astype(np.float32), sample_rate)
|
| 147 |
+
|
| 148 |
+
return temp_file.name
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
# Custom CSS
|
| 152 |
+
custom_css = """
|
| 153 |
+
.gradio-container {
|
| 154 |
+
font-family: 'IBM Plex Sans', sans-serif;
|
| 155 |
+
}
|
| 156 |
+
.gr-button {
|
| 157 |
+
background: linear-gradient(90deg, #4CAF50, #45a049);
|
| 158 |
+
border: none;
|
| 159 |
+
}
|
| 160 |
+
.gr-button:hover {
|
| 161 |
+
background: linear-gradient(90deg, #45a049, #4CAF50);
|
| 162 |
+
}
|
| 163 |
+
#component-0 {
|
| 164 |
+
max-width: 900px;
|
| 165 |
+
margin: auto;
|
| 166 |
+
padding: 20px;
|
| 167 |
+
}
|
| 168 |
+
"""
|
| 169 |
+
|
| 170 |
+
# Build Gradio interface
|
| 171 |
+
with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
|
| 172 |
+
gr.Markdown("""
|
| 173 |
+
# ποΈ DTLN Voice Denoising for Alif E7 NPU
|
| 174 |
+
|
| 175 |
+
Real-time speech enhancement optimized for edge deployment on **Alif Semiconductor E7** processors.
|
| 176 |
+
|
| 177 |
+
### π Features:
|
| 178 |
+
- **Optimized for Edge AI**: Runs on Arm Ethos-U55 NPU with <100KB model size
|
| 179 |
+
- **Real-time Processing**: <8ms latency for streaming audio
|
| 180 |
+
- **INT8 Quantization**: Efficient deployment with 8-bit precision
|
| 181 |
+
- **TensorFlow Lite**: Ready for microcontroller deployment
|
| 182 |
+
|
| 183 |
+
---
|
| 184 |
+
""")
|
| 185 |
+
|
| 186 |
+
with gr.Row():
|
| 187 |
+
with gr.Column():
|
| 188 |
+
gr.Markdown("### π€ Input")
|
| 189 |
+
audio_input = gr.Audio(
|
| 190 |
+
label="Upload Noisy Audio",
|
| 191 |
+
type="filepath",
|
| 192 |
+
sources=["upload", "microphone"]
|
| 193 |
+
)
|
| 194 |
+
|
| 195 |
+
noise_reduction = gr.Slider(
|
| 196 |
+
minimum=0,
|
| 197 |
+
maximum=20,
|
| 198 |
+
value=10,
|
| 199 |
+
step=1,
|
| 200 |
+
label="Noise Reduction Strength (dB)",
|
| 201 |
+
info="Higher values remove more noise but may affect speech quality"
|
| 202 |
+
)
|
| 203 |
+
|
| 204 |
+
with gr.Row():
|
| 205 |
+
process_btn = gr.Button("π Denoise Audio", variant="primary", size="lg")
|
| 206 |
+
demo_btn = gr.Button("π΅ Try Demo Audio", variant="secondary")
|
| 207 |
+
|
| 208 |
+
with gr.Column():
|
| 209 |
+
gr.Markdown("### π₯ Output")
|
| 210 |
+
audio_output = gr.Audio(
|
| 211 |
+
label="Denoised Audio",
|
| 212 |
+
type="numpy"
|
| 213 |
+
)
|
| 214 |
+
|
| 215 |
+
info_output = gr.Textbox(
|
| 216 |
+
label="Processing Info",
|
| 217 |
+
lines=12,
|
| 218 |
+
max_lines=12
|
| 219 |
+
)
|
| 220 |
+
|
| 221 |
+
# About section
|
| 222 |
+
with gr.Accordion("π About This Model", open=False):
|
| 223 |
+
gr.Markdown("""
|
| 224 |
+
### DTLN Architecture
|
| 225 |
+
|
| 226 |
+
**Dual-signal Transformation LSTM Network** is a real-time speech enhancement model:
|
| 227 |
+
|
| 228 |
+
- **Two-stage processing**: Magnitude estimation β Final enhancement
|
| 229 |
+
- **LSTM-based**: Captures temporal dependencies in speech
|
| 230 |
+
- **<1M parameters**: Lightweight for edge deployment
|
| 231 |
+
- **Frequency + Time domain**: Processes both domains for better quality
|
| 232 |
+
|
| 233 |
+
### Alif E7 NPU Specifications
|
| 234 |
+
|
| 235 |
+
- **NPU**: Dual Arm Ethos-U55 (128 + 256 MACs)
|
| 236 |
+
- **CPU**: Dual Cortex-M55 (400 MHz + 160 MHz)
|
| 237 |
+
- **Performance**: 250+ GOPS
|
| 238 |
+
- **Quantization**: 8-bit and 16-bit integer operations
|
| 239 |
+
- **Memory**: 1MB DTCM, 256KB ITCM
|
| 240 |
+
|
| 241 |
+
### Performance Targets
|
| 242 |
+
|
| 243 |
+
| Metric | Value |
|
| 244 |
+
|--------|-------|
|
| 245 |
+
| Model Size | ~100 KB (INT8) |
|
| 246 |
+
| Latency | 3-6 ms |
|
| 247 |
+
| Power | 30-40 mW |
|
| 248 |
+
| SNR Improvement | 10-15 dB |
|
| 249 |
+
|
| 250 |
+
---
|
| 251 |
+
|
| 252 |
+
β οΈ **Demo Note**: This Space uses spectral subtraction for demonstration.
|
| 253 |
+
Download the full implementation to train and deploy the actual DTLN model!
|
| 254 |
+
""")
|
| 255 |
+
|
| 256 |
+
# Training guide section
|
| 257 |
+
with gr.Accordion("π οΈ Training & Deployment Guide", open=False):
|
| 258 |
+
gr.Markdown("""
|
| 259 |
+
### Quick Start
|
| 260 |
+
|
| 261 |
+
```bash
|
| 262 |
+
# 1. Install dependencies
|
| 263 |
+
pip install -r requirements.txt
|
| 264 |
+
|
| 265 |
+
# 2. Train model
|
| 266 |
+
python train_dtln.py \\
|
| 267 |
+
--clean-dir ./data/clean_speech \\
|
| 268 |
+
--noise-dir ./data/noise \\
|
| 269 |
+
--epochs 50 \\
|
| 270 |
+
--batch-size 16
|
| 271 |
+
|
| 272 |
+
# 3. Convert to TFLite INT8
|
| 273 |
+
python convert_to_tflite.py \\
|
| 274 |
+
--model ./models/best_model.h5 \\
|
| 275 |
+
--output ./models/dtln_ethos_u55.tflite \\
|
| 276 |
+
--calibration-dir ./data/clean_speech
|
| 277 |
+
|
| 278 |
+
# 4. Optimize for Ethos-U55
|
| 279 |
+
vela --accelerator-config ethos-u55-256 \\
|
| 280 |
+
--system-config Ethos_U55_High_End_Embedded \\
|
| 281 |
+
./models/dtln_ethos_u55.tflite
|
| 282 |
+
```
|
| 283 |
+
|
| 284 |
+
### Download Full Implementation
|
| 285 |
+
|
| 286 |
+
The complete training and deployment code is available in the Files tab β
|
| 287 |
+
|
| 288 |
+
Includes:
|
| 289 |
+
- `dtln_ethos_u55.py` - Model architecture
|
| 290 |
+
- `train_dtln.py` - Training with QAT
|
| 291 |
+
- `convert_to_tflite.py` - TFLite conversion
|
| 292 |
+
- `alif_e7_voice_denoising_guide.md` - Complete guide
|
| 293 |
+
- `example_usage.py` - Usage examples
|
| 294 |
+
|
| 295 |
+
### Resources
|
| 296 |
+
|
| 297 |
+
- [Alif Semiconductor](https://alifsemi.com/)
|
| 298 |
+
- [Arm Ethos-U55](https://developer.arm.com/ip-products/processors/machine-learning/arm-ethos-u)
|
| 299 |
+
- [DTLN Paper (Interspeech 2020)](https://arxiv.org/abs/2005.07551)
|
| 300 |
+
- [TensorFlow Lite Micro](https://www.tensorflow.org/lite/microcontrollers)
|
| 301 |
+
""")
|
| 302 |
+
|
| 303 |
+
# Tech specs section
|
| 304 |
+
with gr.Accordion("βοΈ Technical Specifications", open=False):
|
| 305 |
+
gr.Markdown("""
|
| 306 |
+
### Model Architecture Details
|
| 307 |
+
|
| 308 |
+
**Input**: Raw audio waveform @ 16kHz
|
| 309 |
+
- Frame length: 512 samples (32ms)
|
| 310 |
+
- Frame shift: 128 samples (8ms)
|
| 311 |
+
- Frequency bins: 257 (FFT size 512)
|
| 312 |
+
|
| 313 |
+
**Network Structure**:
|
| 314 |
+
```
|
| 315 |
+
Input Audio (16kHz)
|
| 316 |
+
β
|
| 317 |
+
STFT (512-point)
|
| 318 |
+
β
|
| 319 |
+
[Stage 1]
|
| 320 |
+
LSTM (128 units) β Dense (sigmoid) β Magnitude Mask 1
|
| 321 |
+
β
|
| 322 |
+
Enhanced Magnitude 1
|
| 323 |
+
β
|
| 324 |
+
[Stage 2]
|
| 325 |
+
LSTM (128 units) β Dense (sigmoid) β Magnitude Mask 2
|
| 326 |
+
β
|
| 327 |
+
Enhanced Magnitude
|
| 328 |
+
β
|
| 329 |
+
ISTFT
|
| 330 |
+
β
|
| 331 |
+
Output Audio (16kHz)
|
| 332 |
+
```
|
| 333 |
+
|
| 334 |
+
**Training Configuration**:
|
| 335 |
+
- Loss: Combined time + frequency domain MSE
|
| 336 |
+
- Optimizer: Adam (lr=0.001)
|
| 337 |
+
- Batch size: 16
|
| 338 |
+
- Epochs: 50
|
| 339 |
+
- Quantization: INT8 post-training quantization
|
| 340 |
+
|
| 341 |
+
**Memory Footprint**:
|
| 342 |
+
- Model weights: ~80 KB (INT8)
|
| 343 |
+
- Tensor arena: ~100 KB
|
| 344 |
+
- Audio buffers: ~2 KB
|
| 345 |
+
- **Total**: ~200 KB
|
| 346 |
+
|
| 347 |
+
### Deployment on Alif E7
|
| 348 |
+
|
| 349 |
+
**Hardware Utilization**:
|
| 350 |
+
- NPU: Ethos-U55 256 MACs for LSTM inference
|
| 351 |
+
- CPU: Cortex-M55 for FFT (CMSIS-DSP)
|
| 352 |
+
- Memory: DTCM for model + buffers
|
| 353 |
+
- Peripherals: I2S/PDM for audio I/O
|
| 354 |
+
|
| 355 |
+
**Power Profile**:
|
| 356 |
+
- Active inference: 30-40 mW
|
| 357 |
+
- Idle: <1 mW
|
| 358 |
+
- Average (50% duty): ~15-20 mW
|
| 359 |
+
|
| 360 |
+
**Real-time Constraints**:
|
| 361 |
+
- Frame processing: 8ms available
|
| 362 |
+
- FFT: ~1ms
|
| 363 |
+
- NPU inference: ~4ms
|
| 364 |
+
- IFFT + overhead: ~2ms
|
| 365 |
+
- **Margin**: ~1ms
|
| 366 |
+
""")
|
| 367 |
+
|
| 368 |
+
# Event handlers
|
| 369 |
+
process_btn.click(
|
| 370 |
+
fn=process_audio,
|
| 371 |
+
inputs=[audio_input, noise_reduction],
|
| 372 |
+
outputs=[audio_output, info_output]
|
| 373 |
+
)
|
| 374 |
+
|
| 375 |
+
demo_btn.click(
|
| 376 |
+
fn=generate_demo_audio,
|
| 377 |
+
inputs=[],
|
| 378 |
+
outputs=[audio_input]
|
| 379 |
+
)
|
| 380 |
+
|
| 381 |
+
# Footer
|
| 382 |
+
gr.Markdown("""
|
| 383 |
+
---
|
| 384 |
+
|
| 385 |
+
### π Citation
|
| 386 |
+
|
| 387 |
+
If you use this model in your research, please cite:
|
| 388 |
+
|
| 389 |
+
```bibtex
|
| 390 |
+
@inproceedings{westhausen2020dtln,
|
| 391 |
+
title={Dual-signal transformation LSTM network for real-time noise suppression},
|
| 392 |
+
author={Westhausen, Nils L and Meyer, Bernd T},
|
| 393 |
+
booktitle={Interspeech},
|
| 394 |
+
year={2020}
|
| 395 |
+
}
|
| 396 |
+
```
|
| 397 |
+
|
| 398 |
+
---
|
| 399 |
+
|
| 400 |
+
<div style="text-align: center; color: #666;">
|
| 401 |
+
Built for <b>Alif Semiconductor E7</b> β’ Optimized for <b>Arm Ethos-U55 NPU</b> β’
|
| 402 |
+
<a href="https://github.com/breizhn/DTLN">Original DTLN</a>
|
| 403 |
+
</div>
|
| 404 |
+
""")
|
| 405 |
+
|
| 406 |
+
# Launch configuration
|
| 407 |
+
if __name__ == "__main__":
|
| 408 |
+
demo.launch()
|