Spaces:
Runtime error
Runtime error
| import streamlit as st | |
| import pandas as pd | |
| import torch | |
| from transformers import pipeline | |
| import datetime | |
| from rapidfuzz import process, fuzz | |
| # Load the CSV file | |
| df = pd.read_csv("anomalies.csv", quotechar='"') | |
| # Convert 'real' column to standard float format and then to strings | |
| df['real'] = df['real'].apply(lambda x: f"{x:.2f}") | |
| # Fill NaN values and convert all columns to strings | |
| df = df.fillna('').astype(str) | |
| # Function to filter the DataFrame using RapidFuzz for dates | |
| def filter_dataframe_by_date(df, date_str, threshold=80): | |
| # Apply fuzzy matching on the 'ds' (date) column | |
| matches = process.extract(date_str, df['ds'], scorer=fuzz.token_sort_ratio, limit=None) | |
| filtered_rows = [match[2] for match in matches if match[1] >= threshold] | |
| return df.iloc[filtered_rows] | |
| # Function to filter the DataFrame using RapidFuzz for groups | |
| def filter_dataframe_by_group(df, group_keyword, threshold=80): | |
| # Apply fuzzy matching on the 'Group' column | |
| matches = process.extract(group_keyword, df['Group'], scorer=fuzz.token_sort_ratio, limit=None) | |
| filtered_rows = [match[2] for match in matches if match[1] >= threshold] | |
| return df.iloc[filtered_rows] | |
| # Function to generate a response using the TAPAS model | |
| def response(user_question, df): | |
| a = datetime.datetime.now() | |
| # Extract date and group keywords from the user question | |
| date_str = "December 2022" # Example; you'd extract this from the user question | |
| group_keyword = "IPVA" | |
| # Filter the DataFrame by date and group | |
| subset_df = filter_dataframe_by_date(df, date_str) | |
| subset_df = filter_dataframe_by_group(subset_df, group_keyword) | |
| # Initialize the TAPAS model | |
| tqa = pipeline(task="table-question-answering", model="google/tapas-large-finetuned-wtq", | |
| tokenizer_kwargs={"clean_up_tokenization_spaces": False}) | |
| # Debugging information | |
| print("Filtered DataFrame shape:", subset_df.shape) | |
| print("Filtered DataFrame head:\n", subset_df.head()) | |
| print("User question:", user_question) | |
| # Query the TAPAS model | |
| try: | |
| answer = tqa(table=subset_df, query=user_question)['answer'] | |
| except IndexError as e: | |
| print(f"Error: {e}") | |
| answer = "Error occurred: " + str(e) | |
| query_result = { | |
| "Resposta": answer | |
| } | |
| b = datetime.datetime.now() | |
| print("Time taken:", b - a) | |
| return query_result | |
| # Streamlit interface | |
| st.markdown(""" | |
| <div style='display: flex; align-items: center;'> | |
| <div style='width: 40px; height: 40px; background-color: green; border-radius: 50%; margin-right: 5px;'></div> | |
| <div style='width: 40px; height: 40px; background-color: red; border-radius: 50%; margin-right: 5px;'></div> | |
| <div style='width: 40px; height: 40px; background-color: yellow; border-radius: 50%; margin-right: 5px;'></div> | |
| <span style='font-size: 40px; font-weight: bold;'>Chatbot do Tesouro RS</span> | |
| </div> | |
| """, unsafe_allow_html=True) | |
| # Chat history | |
| if 'history' not in st.session_state: | |
| st.session_state['history'] = [] | |
| # Input box for user question | |
| user_question = st.text_input("Escreva sua questΓ£o aqui:", "") | |
| if user_question: | |
| # Add human emoji when user asks a question | |
| st.session_state['history'].append(('π€', user_question)) | |
| st.markdown(f"**π€ {user_question}**") | |
| # Generate the response | |
| bot_response = response(user_question, df)["Resposta"] | |
| # Add robot emoji when generating response and align to the right | |
| st.session_state['history'].append(('π€', bot_response)) | |
| st.markdown(f"<div style='text-align: right'>**π€ {bot_response}**</div>", unsafe_allow_html=True) | |
| # Clear history button | |
| if st.button("Limpar"): | |
| st.session_state['history'] = [] | |
| # Display chat history | |
| for sender, message in st.session_state['history']: | |
| if sender == 'π€': | |
| st.markdown(f"**π€ {message}**") | |
| elif sender == 'π€': | |
| st.markdown(f"<div style='text-align: right'>**π€ {message}**</div>", unsafe_allow_html=True) | |