Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,6 +3,7 @@ import pandas as pd
|
|
| 3 |
import torch
|
| 4 |
from transformers import pipeline
|
| 5 |
import datetime
|
|
|
|
| 6 |
|
| 7 |
# Load the CSV file
|
| 8 |
df = pd.read_csv("anomalies.csv", quotechar='"')
|
|
@@ -13,25 +14,39 @@ df['real'] = df['real'].apply(lambda x: f"{x:.2f}")
|
|
| 13 |
# Fill NaN values and convert all columns to strings
|
| 14 |
df = df.fillna('').astype(str)
|
| 15 |
|
| 16 |
-
#
|
| 17 |
-
def
|
| 18 |
-
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
# Function to generate a response using the TAPAS model
|
| 22 |
def response(user_question, df):
|
| 23 |
a = datetime.datetime.now()
|
| 24 |
|
| 25 |
-
#
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
# Initialize the TAPAS model
|
| 29 |
tqa = pipeline(task="table-question-answering", model="google/tapas-large-finetuned-wtq",
|
| 30 |
tokenizer_kwargs={"clean_up_tokenization_spaces": False})
|
| 31 |
|
| 32 |
# Debugging information
|
| 33 |
-
print("
|
| 34 |
-
print("
|
| 35 |
print("User question:", user_question)
|
| 36 |
|
| 37 |
# Query the TAPAS model
|
|
|
|
| 3 |
import torch
|
| 4 |
from transformers import pipeline
|
| 5 |
import datetime
|
| 6 |
+
from rapidfuzz import process, fuzz
|
| 7 |
|
| 8 |
# Load the CSV file
|
| 9 |
df = pd.read_csv("anomalies.csv", quotechar='"')
|
|
|
|
| 14 |
# Fill NaN values and convert all columns to strings
|
| 15 |
df = df.fillna('').astype(str)
|
| 16 |
|
| 17 |
+
# Function to filter the DataFrame using RapidFuzz for dates
|
| 18 |
+
def filter_dataframe_by_date(df, date_str, threshold=80):
|
| 19 |
+
# Apply fuzzy matching on the 'ds' (date) column
|
| 20 |
+
matches = process.extract(date_str, df['ds'], scorer=fuzz.token_sort_ratio, limit=None)
|
| 21 |
+
filtered_rows = [match[2] for match in matches if match[1] >= threshold]
|
| 22 |
+
return df.iloc[filtered_rows]
|
| 23 |
+
|
| 24 |
+
# Function to filter the DataFrame using RapidFuzz for groups
|
| 25 |
+
def filter_dataframe_by_group(df, group_keyword, threshold=80):
|
| 26 |
+
# Apply fuzzy matching on the 'Group' column
|
| 27 |
+
matches = process.extract(group_keyword, df['Group'], scorer=fuzz.token_sort_ratio, limit=None)
|
| 28 |
+
filtered_rows = [match[2] for match in matches if match[1] >= threshold]
|
| 29 |
+
return df.iloc[filtered_rows]
|
| 30 |
|
| 31 |
# Function to generate a response using the TAPAS model
|
| 32 |
def response(user_question, df):
|
| 33 |
a = datetime.datetime.now()
|
| 34 |
|
| 35 |
+
# Extract date and group keywords from the user question
|
| 36 |
+
date_str = "December 2022" # Example; you'd extract this from the user question
|
| 37 |
+
group_keyword = "IPVA"
|
| 38 |
+
|
| 39 |
+
# Filter the DataFrame by date and group
|
| 40 |
+
subset_df = filter_dataframe_by_date(df, date_str)
|
| 41 |
+
subset_df = filter_dataframe_by_group(subset_df, group_keyword)
|
| 42 |
|
| 43 |
# Initialize the TAPAS model
|
| 44 |
tqa = pipeline(task="table-question-answering", model="google/tapas-large-finetuned-wtq",
|
| 45 |
tokenizer_kwargs={"clean_up_tokenization_spaces": False})
|
| 46 |
|
| 47 |
# Debugging information
|
| 48 |
+
print("Filtered DataFrame shape:", subset_df.shape)
|
| 49 |
+
print("Filtered DataFrame head:\n", subset_df.head())
|
| 50 |
print("User question:", user_question)
|
| 51 |
|
| 52 |
# Query the TAPAS model
|