Spaces:
Running
on
Zero
Running
on
Zero
Delete watermarking.py
#1
by
deleted
- opened
- watermarking.py +0 -78
watermarking.py
DELETED
|
@@ -1,78 +0,0 @@
|
|
| 1 |
-
import os
|
| 2 |
-
import argparse
|
| 3 |
-
|
| 4 |
-
import silentcipher
|
| 5 |
-
import torch
|
| 6 |
-
import torchaudio
|
| 7 |
-
|
| 8 |
-
CSM_1B_HF_WATERMARK = list(map(int, os.getenv("WATERMARK_KEY").split(" ")))
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
def cli_check_audio() -> None:
|
| 12 |
-
parser = argparse.ArgumentParser()
|
| 13 |
-
parser.add_argument("--audio_path", type=str, required=True)
|
| 14 |
-
args = parser.parse_args()
|
| 15 |
-
|
| 16 |
-
check_audio_from_file(args.audio_path)
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
def load_watermarker(device: str = "cuda") -> silentcipher.server.Model:
|
| 20 |
-
model = silentcipher.get_model(
|
| 21 |
-
model_type="44.1k",
|
| 22 |
-
device=device,
|
| 23 |
-
)
|
| 24 |
-
return model
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
@torch.inference_mode()
|
| 28 |
-
def watermark(
|
| 29 |
-
watermarker: silentcipher.server.Model,
|
| 30 |
-
audio_array: torch.Tensor,
|
| 31 |
-
sample_rate: int,
|
| 32 |
-
watermark_key: list[int],
|
| 33 |
-
) -> tuple[torch.Tensor, int]:
|
| 34 |
-
audio_array_44khz = torchaudio.functional.resample(audio_array, orig_freq=sample_rate, new_freq=44100)
|
| 35 |
-
encoded, _ = watermarker.encode_wav(audio_array_44khz, 44100, watermark_key, calc_sdr=False, message_sdr=36)
|
| 36 |
-
|
| 37 |
-
output_sample_rate = min(44100, sample_rate)
|
| 38 |
-
encoded = torchaudio.functional.resample(encoded, orig_freq=44100, new_freq=output_sample_rate)
|
| 39 |
-
return encoded, output_sample_rate
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
@torch.inference_mode()
|
| 43 |
-
def verify(
|
| 44 |
-
watermarker: silentcipher.server.Model,
|
| 45 |
-
watermarked_audio: torch.Tensor,
|
| 46 |
-
sample_rate: int,
|
| 47 |
-
watermark_key: list[int],
|
| 48 |
-
) -> bool:
|
| 49 |
-
watermarked_audio_44khz = torchaudio.functional.resample(watermarked_audio, orig_freq=sample_rate, new_freq=44100)
|
| 50 |
-
result = watermarker.decode_wav(watermarked_audio_44khz, 44100, phase_shift_decoding=True)
|
| 51 |
-
|
| 52 |
-
is_watermarked = result["status"]
|
| 53 |
-
if is_watermarked:
|
| 54 |
-
is_csm_watermarked = result["messages"][0] == watermark_key
|
| 55 |
-
else:
|
| 56 |
-
is_csm_watermarked = False
|
| 57 |
-
|
| 58 |
-
return is_watermarked and is_csm_watermarked
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
def check_audio_from_file(audio_path: str) -> None:
|
| 62 |
-
watermarker = load_watermarker(device="cuda")
|
| 63 |
-
|
| 64 |
-
audio_array, sample_rate = load_audio(audio_path)
|
| 65 |
-
is_watermarked = verify(watermarker, audio_array, sample_rate, CSM_1B_HF_WATERMARK)
|
| 66 |
-
|
| 67 |
-
outcome = "Watermarked" if is_watermarked else "Not watermarked"
|
| 68 |
-
print(f"{outcome}: {audio_path}")
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
def load_audio(audio_path: str) -> tuple[torch.Tensor, int]:
|
| 72 |
-
audio_array, sample_rate = torchaudio.load(audio_path)
|
| 73 |
-
audio_array = audio_array.mean(dim=0)
|
| 74 |
-
return audio_array, int(sample_rate)
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
if __name__ == "__main__":
|
| 78 |
-
cli_check_audio()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|