Delete watermarking.py

#1
by deleted - opened
Files changed (1) hide show
  1. watermarking.py +0 -78
watermarking.py DELETED
@@ -1,78 +0,0 @@
1
- import os
2
- import argparse
3
-
4
- import silentcipher
5
- import torch
6
- import torchaudio
7
-
8
- CSM_1B_HF_WATERMARK = list(map(int, os.getenv("WATERMARK_KEY").split(" ")))
9
-
10
-
11
- def cli_check_audio() -> None:
12
- parser = argparse.ArgumentParser()
13
- parser.add_argument("--audio_path", type=str, required=True)
14
- args = parser.parse_args()
15
-
16
- check_audio_from_file(args.audio_path)
17
-
18
-
19
- def load_watermarker(device: str = "cuda") -> silentcipher.server.Model:
20
- model = silentcipher.get_model(
21
- model_type="44.1k",
22
- device=device,
23
- )
24
- return model
25
-
26
-
27
- @torch.inference_mode()
28
- def watermark(
29
- watermarker: silentcipher.server.Model,
30
- audio_array: torch.Tensor,
31
- sample_rate: int,
32
- watermark_key: list[int],
33
- ) -> tuple[torch.Tensor, int]:
34
- audio_array_44khz = torchaudio.functional.resample(audio_array, orig_freq=sample_rate, new_freq=44100)
35
- encoded, _ = watermarker.encode_wav(audio_array_44khz, 44100, watermark_key, calc_sdr=False, message_sdr=36)
36
-
37
- output_sample_rate = min(44100, sample_rate)
38
- encoded = torchaudio.functional.resample(encoded, orig_freq=44100, new_freq=output_sample_rate)
39
- return encoded, output_sample_rate
40
-
41
-
42
- @torch.inference_mode()
43
- def verify(
44
- watermarker: silentcipher.server.Model,
45
- watermarked_audio: torch.Tensor,
46
- sample_rate: int,
47
- watermark_key: list[int],
48
- ) -> bool:
49
- watermarked_audio_44khz = torchaudio.functional.resample(watermarked_audio, orig_freq=sample_rate, new_freq=44100)
50
- result = watermarker.decode_wav(watermarked_audio_44khz, 44100, phase_shift_decoding=True)
51
-
52
- is_watermarked = result["status"]
53
- if is_watermarked:
54
- is_csm_watermarked = result["messages"][0] == watermark_key
55
- else:
56
- is_csm_watermarked = False
57
-
58
- return is_watermarked and is_csm_watermarked
59
-
60
-
61
- def check_audio_from_file(audio_path: str) -> None:
62
- watermarker = load_watermarker(device="cuda")
63
-
64
- audio_array, sample_rate = load_audio(audio_path)
65
- is_watermarked = verify(watermarker, audio_array, sample_rate, CSM_1B_HF_WATERMARK)
66
-
67
- outcome = "Watermarked" if is_watermarked else "Not watermarked"
68
- print(f"{outcome}: {audio_path}")
69
-
70
-
71
- def load_audio(audio_path: str) -> tuple[torch.Tensor, int]:
72
- audio_array, sample_rate = torchaudio.load(audio_path)
73
- audio_array = audio_array.mean(dim=0)
74
- return audio_array, int(sample_rate)
75
-
76
-
77
- if __name__ == "__main__":
78
- cli_check_audio()