Spaces:
Paused
Paused
| # FILE: app_complete.py | |
| # DESCRIPTION: Gradio web interface for the LTX-Video generation service. | |
| # Provides a user-friendly, step-by-step workflow for creating videos. | |
| import gradio as gr | |
| import traceback | |
| import sys | |
| # ============================================================================== | |
| # --- BACKEND SERVICES IMPORT --- | |
| # ============================================================================== | |
| # Encapsulate imports in a try-except block for robust error handling at startup. | |
| try: | |
| # This assumes the backend file is named 'ltx_server_refactored_complete.py' | |
| # and is in a reachable path (e.g., 'api/'). | |
| from api.ltx_server_refactored_complete import video_generation_service | |
| # Placeholder for SeedVR server. | |
| # from api.seedvr_server import SeedVRServer | |
| # seedvr_inference_server = SeedVRServer() | |
| seedvr_inference_server = None | |
| print("Backend services imported successfully.") | |
| except ImportError as e: | |
| print(f"FATAL ERROR: Could not import backend services. Ensure the backend file is accessible. Details: {e}") | |
| sys.exit(1) | |
| except Exception as e: | |
| print(f"FATAL ERROR: An unexpected error occurred during backend initialization. Details: {e}") | |
| sys.exit(1) | |
| # ============================================================================== | |
| # --- UI WRAPPER FUNCTIONS --- | |
| # These functions act as a bridge between the Gradio UI and the backend service. | |
| # They handle data conversion, error catching, and UI updates. | |
| # ============================================================================== | |
| def run_generate_base_video( | |
| generation_mode: str, prompt: str, neg_prompt: str, start_img: str, | |
| height: int, width: int, duration: float, seed: int, randomize_seed: bool, | |
| fp_guidance_preset: str, fp_guidance_scale_list: str, fp_stg_scale_list: str, | |
| progress=gr.Progress(track_tqdm=True) | |
| ) -> tuple: | |
| """ | |
| Wrapper to call the backend for generating the initial low-resolution video. | |
| It decides whether to use the 'narrative' or 'single' generation mode. | |
| """ | |
| try: | |
| print(f"[UI] Request received for base video generation. Mode: {generation_mode}") | |
| initial_conditions = [] | |
| if start_img: | |
| # Estimate total frames for conditioning context | |
| num_frames_estimate = int(duration * 24) | |
| items_list = [[start_img, 0, 1.0]] # [[media, frame, weight]] | |
| initial_conditions = video_generation_service.prepare_condition_items( | |
| items_list, height, width, num_frames_estimate | |
| ) | |
| # Package advanced LTX settings for the backend | |
| ltx_configs = { | |
| "guidance_preset": fp_guidance_preset, | |
| "guidance_scale_list": fp_guidance_scale_list, | |
| "stg_scale_list": fp_stg_scale_list, | |
| } | |
| # Select the appropriate backend function based on UI mode | |
| if generation_mode == "Narrativa (Múltiplos Prompts)": | |
| func_to_call = video_generation_service.generate_narrative_low | |
| else: | |
| func_to_call = video_generation_service.generate_single_low | |
| video_path, tensor_path, final_seed = func_to_call( | |
| prompt=prompt, negative_prompt=neg_prompt, | |
| height=height, width=width, duration=duration, | |
| seed=None if randomize_seed else int(seed), | |
| initial_conditions=initial_conditions, | |
| ltx_configs_override=ltx_configs | |
| ) | |
| if not video_path: | |
| raise RuntimeError("Backend failed to return a valid video path.") | |
| # Update the session state with the results | |
| new_state = {"low_res_video": video_path, "low_res_latents": tensor_path, "used_seed": final_seed} | |
| print(f"[UI] Base video generation successful. Path: {video_path}") | |
| return video_path, new_state, gr.update(visible=True) | |
| except Exception as e: | |
| error_message = f"❌ An error occurred during base generation:\n{e}" | |
| print(f"{error_message}\nDetails: {traceback.format_exc()}") | |
| raise gr.Error(error_message) | |
| def run_ltx_refinement( | |
| state: dict, prompt: str, neg_prompt: str, | |
| progress=gr.Progress(track_tqdm=True) | |
| ) -> tuple: | |
| """Wrapper to call the LTX texture refinement and upscaling backend function.""" | |
| if not state or not state.get("low_res_latents"): | |
| raise gr.Error("Error: Please generate a base video in Step 1 before refining.") | |
| try: | |
| print("[UI] Request received for LTX refinement.") | |
| video_path, tensor_path = video_generation_service.generate_upscale_denoise( | |
| latents_path=state["low_res_latents"], | |
| prompt=prompt, | |
| negative_prompt=neg_prompt, | |
| seed=state["used_seed"] | |
| ) | |
| # Update state with refined assets | |
| state["refined_video_ltx"] = video_path | |
| state["refined_latents_ltx"] = tensor_path | |
| print(f"[UI] LTX refinement successful. Path: {video_path}") | |
| return video_path, state | |
| except Exception as e: | |
| error_message = f"❌ An error occurred during LTX Refinement:\n{e}" | |
| print(f"{error_message}\nDetails: {traceback.format_exc()}") | |
| raise gr.Error(error_message) | |
| def run_seedvr_upscaling( | |
| state: dict, seed: int, resolution: int, batch_size: int, fps: int, | |
| progress=gr.Progress(track_tqdm=True) | |
| ) -> tuple: | |
| """Wrapper to call the SeedVR upscaling backend service.""" | |
| if not state or not state.get("low_res_video"): | |
| raise gr.Error("Error: Please generate a base video in Step 1 before upscaling.") | |
| if not seedvr_inference_server: | |
| raise gr.Error("Error: The SeedVR upscaling server is not available.") | |
| try: | |
| print("[UI] Request received for SeedVR upscaling.") | |
| def progress_wrapper(p, desc=""): progress(p, desc=desc) | |
| output_filepath = seedvr_inference_server.run_inference( | |
| file_path=state["low_res_video"], seed=seed, resolution=resolution, | |
| batch_size=batch_size, fps=fps, progress=progress_wrapper | |
| ) | |
| status_message = f"✅ Upscaling complete!\nSaved to: {output_filepath}" | |
| print(f"[UI] SeedVR upscaling successful. Path: {output_filepath}") | |
| return gr.update(value=output_filepath), gr.update(value=status_message) | |
| except Exception as e: | |
| error_message = f"❌ An error occurred during SeedVR Upscaling:\n{e}" | |
| print(f"{error_message}\nDetails: {traceback.format_exc()}") | |
| return None, gr.update(value=error_message) | |
| # ============================================================================== | |
| # --- UI BUILDER --- | |
| # Functions dedicated to creating parts of the Gradio interface. | |
| # ============================================================================== | |
| def build_ui(): | |
| """Constructs the entire Gradio application UI.""" | |
| with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue")) as demo: | |
| # App state persists across interactions within a session | |
| app_state = gr.State(value={"low_res_video": None, "low_res_latents": None, "used_seed": None}) | |
| gr.Markdown("# LTX Video - Geração e Pós-Produção por Etapas", elem_id="main-title") | |
| ui_components = {} # Dictionary to hold all key UI components | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| # Build the main generation controls (Step 1) | |
| _build_generation_controls(ui_components) | |
| with gr.Column(scale=1): | |
| gr.Markdown("### Vídeo Base Gerado") | |
| ui_components['low_res_video_output'] = gr.Video( | |
| label="O resultado da Etapa 1 aparecerá aqui", interactive=False | |
| ) | |
| # Build the post-production section (Step 2), initially hidden | |
| _build_postprod_controls(ui_components) | |
| # Connect all UI events to their corresponding functions | |
| _register_event_handlers(app_state, ui_components) | |
| return demo | |
| def _build_generation_controls(ui: dict): | |
| """Builds the UI components for Step 1: Base Video Generation.""" | |
| gr.Markdown("### Etapa 1: Configurações de Geração") | |
| ui['generation_mode'] = gr.Radio( | |
| label="Modo de Geração", | |
| choices=["Simples (Prompt Único)", "Narrativa (Múltiplos Prompts)"], | |
| value="Narrativa (Múltiplos Prompts)", | |
| info="Simples para uma ação contínua, Narrativa para uma sequência de cenas (uma por linha)." | |
| ) | |
| ui['prompt'] = gr.Textbox(label="Prompt(s)", value="Um leão majestoso caminha pela savana\nEle sobe em uma grande pedra e olha o horizonte", lines=4) | |
| ui['neg_prompt'] = gr.Textbox(label="Negative Prompt", value="blurry, low quality, bad anatomy, deformed", lines=2) | |
| ui['start_image'] = gr.Image(label="Imagem de Início (Opcional)", type="filepath", sources=["upload"]) | |
| with gr.Accordion("Parâmetros Principais", open=True): | |
| ui['duration'] = gr.Slider(label="Duração Total (s)", value=4, step=1, minimum=1, maximum=30) | |
| with gr.Row(): | |
| ui['height'] = gr.Slider(label="Height", value=432, step=16, minimum=256, maximum=1024) | |
| ui['width'] = gr.Slider(label="Width", value=768, step=16, minimum=256, maximum=1024) | |
| with gr.Row(): | |
| ui['seed'] = gr.Number(label="Seed", value=42, precision=0) | |
| ui['randomize_seed'] = gr.Checkbox(label="Randomize Seed", value=True) | |
| with gr.Accordion("Opções Avançadas de Guiagem (First Pass)", open=False): | |
| ui['fp_guidance_preset'] = gr.Dropdown( | |
| label="Preset de Guiagem", | |
| choices=["Padrão (Recomendado)", "Agressivo", "Suave", "Customizado"], | |
| value="Padrão (Recomendado)", | |
| info="Controla como a guiagem de texto se comporta ao longo da difusão." | |
| ) | |
| with gr.Group(visible=False) as ui['custom_guidance_group']: | |
| gr.Markdown("⚠️ Edite as listas em formato JSON. Ex: `[1.0, 2.5, 3.0]`") | |
| ui['fp_guidance_scale_list'] = gr.Textbox(label="Lista de Guidance Scale", value="[1, 1, 6, 8, 6, 1, 1]") | |
| ui['fp_stg_scale_list'] = gr.Textbox(label="Lista de STG Scale (Movimento)", value="[0, 0, 4, 4, 4, 2, 1]") | |
| ui['generate_low_btn'] = gr.Button("1. Gerar Vídeo Base", variant="primary") | |
| def _build_postprod_controls(ui: dict): | |
| """Builds the UI components for Step 2: Post-Production.""" | |
| with gr.Group(visible=False) as ui['post_prod_group']: | |
| gr.Markdown("--- \n## Etapa 2: Pós-Produção", elem_id="postprod-title") | |
| with gr.Tabs(): | |
| with gr.TabItem("🚀 Upscaler de Textura (LTX)"): | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| gr.Markdown("Usa o prompt e a semente originais para refinar o vídeo, adicionando detalhes e texturas de alta qualidade.") | |
| ui['ltx_refine_btn'] = gr.Button("2. Aplicar Refinamento LTX", variant="primary") | |
| with gr.Column(scale=1): | |
| ui['ltx_refined_video_output'] = gr.Video(label="Vídeo com Textura Refinada", interactive=False) | |
| with gr.TabItem("✨ Upscaler de Resolução (SeedVR)"): | |
| is_seedvr_available = seedvr_inference_server is not None | |
| if not is_seedvr_available: | |
| gr.Markdown("🔴 *O serviço SeedVR não está disponível nesta instância.*") | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| ui['seedvr_seed'] = gr.Slider(minimum=0, maximum=999999, value=42, step=1, label="Seed") | |
| ui['seedvr_resolution'] = gr.Slider(minimum=720, maximum=1440, value=1072, step=8, label="Resolução Vertical") | |
| ui['seedvr_batch_size'] = gr.Slider(minimum=1, maximum=16, value=4, step=1, label="Batch Size por GPU") | |
| ui['seedvr_fps'] = gr.Number(label="FPS de Saída (0 = original)", value=0) | |
| ui['run_seedvr_btn'] = gr.Button("2. Iniciar Upscaling SeedVR", variant="primary", interactive=is_seedvr_available) | |
| with gr.Column(scale=1): | |
| ui['seedvr_video_output'] = gr.Video(label="Vídeo com Upscale SeedVR", interactive=False) | |
| ui['seedvr_status_box'] = gr.Textbox(label="Status", value="Aguardando...", lines=3, interactive=False) | |
| # ============================================================================== | |
| # --- EVENT HANDLERS --- | |
| # Connects UI component events (like clicks) to the wrapper functions. | |
| # ============================================================================== | |
| def _register_event_handlers(app_state: gr.State, ui: dict): | |
| """Registers all Gradio event handlers.""" | |
| # --- Handler for custom guidance visibility --- | |
| def toggle_custom_guidance(preset_choice: str) -> gr.update: | |
| return gr.update(visible=(preset_choice == "Customizado")) | |
| ui['fp_guidance_preset'].change( | |
| fn=toggle_custom_guidance, | |
| inputs=ui['fp_guidance_preset'], | |
| outputs=ui['custom_guidance_group'] | |
| ) | |
| # --- Handler for the main "Generate" button --- | |
| gen_inputs = [ | |
| ui['generation_mode'], ui['prompt'], ui['neg_prompt'], ui['start_image'], | |
| ui['height'], ui['width'], ui['duration'], ui['seed'], ui['randomize_seed'], | |
| ui['fp_guidance_preset'], ui['fp_guidance_scale_list'], ui['fp_stg_scale_list'] | |
| ] | |
| gen_outputs = [ | |
| ui['low_res_video_output'], app_state, ui['post_prod_group'] | |
| ] | |
| ui['generate_low_btn'].click(fn=run_generate_base_video, inputs=gen_inputs, outputs=gen_outputs) | |
| # --- Handler for the LTX Refine button --- | |
| refine_inputs = [app_state, ui['prompt'], ui['neg_prompt']] | |
| refine_outputs = [ui['ltx_refined_video_output'], app_state] | |
| ui['ltx_refine_btn'].click(fn=run_ltx_refinement, inputs=refine_inputs, outputs=refine_outputs) | |
| # --- Handler for the SeedVR Upscale button --- | |
| if 'run_seedvr_btn' in ui: | |
| seedvr_inputs = [app_state, ui['seedvr_seed'], ui['seedvr_resolution'], ui['seedvr_batch_size'], ui['seedvr_fps']] | |
| seedvr_outputs = [ui['seedvr_video_output'], ui['seedvr_status_box']] | |
| ui['run_seedvr_btn'].click(fn=run_seedvr_upscaling, inputs=seedvr_inputs, outputs=seedvr_outputs) | |
| # ============================================================================== | |
| # --- APPLICATION ENTRY POINT --- | |
| # ============================================================================== | |
| if __name__ == "__main__": | |
| print("Building Gradio UI...") | |
| gradio_app = build_ui() | |
| print("Launching Gradio app...") | |
| gradio_app.queue().launch( | |
| server_name="0.0.0.0", | |
| server_port=7860, | |
| debug=True, | |
| show_error=True | |
| ) |