Spaces:
Paused
Paused
File size: 14,905 Bytes
280cfe1 db47818 280cfe1 db47818 280cfe1 9ac7175 280cfe1 9ac7175 280cfe1 9ac7175 280cfe1 9ac7175 280cfe1 9ac7175 280cfe1 8bbdce0 280cfe1 8bbdce0 280cfe1 8bbdce0 280cfe1 9ac7175 280cfe1 9ac7175 280cfe1 9ac7175 994d098 280cfe1 9ac7175 280cfe1 9ac7175 280cfe1 9ac7175 280cfe1 9ac7175 280cfe1 9ac7175 280cfe1 9ac7175 280cfe1 9ac7175 280cfe1 9ac7175 280cfe1 9ac7175 280cfe1 9ac7175 280cfe1 994d098 280cfe1 9ac7175 280cfe1 9ac7175 280cfe1 9ac7175 280cfe1 9ac7175 280cfe1 7720807 280cfe1 7720807 280cfe1 9ac7175 280cfe1 9ac7175 280cfe1 994d098 280cfe1 db47818 280cfe1 35e29a5 db47818 280cfe1 9ac7175 280cfe1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
# FILE: app_complete.py
# DESCRIPTION: Gradio web interface for the LTX-Video generation service.
# Provides a user-friendly, step-by-step workflow for creating videos.
import gradio as gr
import traceback
import sys
# ==============================================================================
# --- BACKEND SERVICES IMPORT ---
# ==============================================================================
# Encapsulate imports in a try-except block for robust error handling at startup.
try:
# This assumes the backend file is named 'ltx_server_refactored_complete.py'
# and is in a reachable path (e.g., 'api/').
from api.ltx_server_refactored_complete import video_generation_service
# Placeholder for SeedVR server.
# from api.seedvr_server import SeedVRServer
# seedvr_inference_server = SeedVRServer()
seedvr_inference_server = None
print("Backend services imported successfully.")
except ImportError as e:
print(f"FATAL ERROR: Could not import backend services. Ensure the backend file is accessible. Details: {e}")
sys.exit(1)
except Exception as e:
print(f"FATAL ERROR: An unexpected error occurred during backend initialization. Details: {e}")
sys.exit(1)
# ==============================================================================
# --- UI WRAPPER FUNCTIONS ---
# These functions act as a bridge between the Gradio UI and the backend service.
# They handle data conversion, error catching, and UI updates.
# ==============================================================================
def run_generate_base_video(
generation_mode: str, prompt: str, neg_prompt: str, start_img: str,
height: int, width: int, duration: float, seed: int, randomize_seed: bool,
fp_guidance_preset: str, fp_guidance_scale_list: str, fp_stg_scale_list: str,
progress=gr.Progress(track_tqdm=True)
) -> tuple:
"""
Wrapper to call the backend for generating the initial low-resolution video.
It decides whether to use the 'narrative' or 'single' generation mode.
"""
try:
print(f"[UI] Request received for base video generation. Mode: {generation_mode}")
initial_conditions = []
if start_img:
# Estimate total frames for conditioning context
num_frames_estimate = int(duration * 24)
items_list = [[start_img, 0, 1.0]] # [[media, frame, weight]]
initial_conditions = video_generation_service.prepare_condition_items(
items_list, height, width, num_frames_estimate
)
# Package advanced LTX settings for the backend
ltx_configs = {
"guidance_preset": fp_guidance_preset,
"guidance_scale_list": fp_guidance_scale_list,
"stg_scale_list": fp_stg_scale_list,
}
# Select the appropriate backend function based on UI mode
if generation_mode == "Narrativa (Múltiplos Prompts)":
func_to_call = video_generation_service.generate_narrative_low
else:
func_to_call = video_generation_service.generate_single_low
video_path, tensor_path, final_seed = func_to_call(
prompt=prompt, negative_prompt=neg_prompt,
height=height, width=width, duration=duration,
seed=None if randomize_seed else int(seed),
initial_conditions=initial_conditions,
ltx_configs_override=ltx_configs
)
if not video_path:
raise RuntimeError("Backend failed to return a valid video path.")
# Update the session state with the results
new_state = {"low_res_video": video_path, "low_res_latents": tensor_path, "used_seed": final_seed}
print(f"[UI] Base video generation successful. Path: {video_path}")
return video_path, new_state, gr.update(visible=True)
except Exception as e:
error_message = f"❌ An error occurred during base generation:\n{e}"
print(f"{error_message}\nDetails: {traceback.format_exc()}")
raise gr.Error(error_message)
def run_ltx_refinement(
state: dict, prompt: str, neg_prompt: str,
progress=gr.Progress(track_tqdm=True)
) -> tuple:
"""Wrapper to call the LTX texture refinement and upscaling backend function."""
if not state or not state.get("low_res_latents"):
raise gr.Error("Error: Please generate a base video in Step 1 before refining.")
try:
print("[UI] Request received for LTX refinement.")
video_path, tensor_path = video_generation_service.generate_upscale_denoise(
latents_path=state["low_res_latents"],
prompt=prompt,
negative_prompt=neg_prompt,
seed=state["used_seed"]
)
# Update state with refined assets
state["refined_video_ltx"] = video_path
state["refined_latents_ltx"] = tensor_path
print(f"[UI] LTX refinement successful. Path: {video_path}")
return video_path, state
except Exception as e:
error_message = f"❌ An error occurred during LTX Refinement:\n{e}"
print(f"{error_message}\nDetails: {traceback.format_exc()}")
raise gr.Error(error_message)
def run_seedvr_upscaling(
state: dict, seed: int, resolution: int, batch_size: int, fps: int,
progress=gr.Progress(track_tqdm=True)
) -> tuple:
"""Wrapper to call the SeedVR upscaling backend service."""
if not state or not state.get("low_res_video"):
raise gr.Error("Error: Please generate a base video in Step 1 before upscaling.")
if not seedvr_inference_server:
raise gr.Error("Error: The SeedVR upscaling server is not available.")
try:
print("[UI] Request received for SeedVR upscaling.")
def progress_wrapper(p, desc=""): progress(p, desc=desc)
output_filepath = seedvr_inference_server.run_inference(
file_path=state["low_res_video"], seed=seed, resolution=resolution,
batch_size=batch_size, fps=fps, progress=progress_wrapper
)
status_message = f"✅ Upscaling complete!\nSaved to: {output_filepath}"
print(f"[UI] SeedVR upscaling successful. Path: {output_filepath}")
return gr.update(value=output_filepath), gr.update(value=status_message)
except Exception as e:
error_message = f"❌ An error occurred during SeedVR Upscaling:\n{e}"
print(f"{error_message}\nDetails: {traceback.format_exc()}")
return None, gr.update(value=error_message)
# ==============================================================================
# --- UI BUILDER ---
# Functions dedicated to creating parts of the Gradio interface.
# ==============================================================================
def build_ui():
"""Constructs the entire Gradio application UI."""
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue")) as demo:
# App state persists across interactions within a session
app_state = gr.State(value={"low_res_video": None, "low_res_latents": None, "used_seed": None})
gr.Markdown("# LTX Video - Geração e Pós-Produção por Etapas", elem_id="main-title")
ui_components = {} # Dictionary to hold all key UI components
with gr.Row():
with gr.Column(scale=1):
# Build the main generation controls (Step 1)
_build_generation_controls(ui_components)
with gr.Column(scale=1):
gr.Markdown("### Vídeo Base Gerado")
ui_components['low_res_video_output'] = gr.Video(
label="O resultado da Etapa 1 aparecerá aqui", interactive=False
)
# Build the post-production section (Step 2), initially hidden
_build_postprod_controls(ui_components)
# Connect all UI events to their corresponding functions
_register_event_handlers(app_state, ui_components)
return demo
def _build_generation_controls(ui: dict):
"""Builds the UI components for Step 1: Base Video Generation."""
gr.Markdown("### Etapa 1: Configurações de Geração")
ui['generation_mode'] = gr.Radio(
label="Modo de Geração",
choices=["Simples (Prompt Único)", "Narrativa (Múltiplos Prompts)"],
value="Narrativa (Múltiplos Prompts)",
info="Simples para uma ação contínua, Narrativa para uma sequência de cenas (uma por linha)."
)
ui['prompt'] = gr.Textbox(label="Prompt(s)", value="Um leão majestoso caminha pela savana\nEle sobe em uma grande pedra e olha o horizonte", lines=4)
ui['neg_prompt'] = gr.Textbox(label="Negative Prompt", value="blurry, low quality, bad anatomy, deformed", lines=2)
ui['start_image'] = gr.Image(label="Imagem de Início (Opcional)", type="filepath", sources=["upload"])
with gr.Accordion("Parâmetros Principais", open=True):
ui['duration'] = gr.Slider(label="Duração Total (s)", value=4, step=1, minimum=1, maximum=30)
with gr.Row():
ui['height'] = gr.Slider(label="Height", value=432, step=16, minimum=256, maximum=1024)
ui['width'] = gr.Slider(label="Width", value=768, step=16, minimum=256, maximum=1024)
with gr.Row():
ui['seed'] = gr.Number(label="Seed", value=42, precision=0)
ui['randomize_seed'] = gr.Checkbox(label="Randomize Seed", value=True)
with gr.Accordion("Opções Avançadas de Guiagem (First Pass)", open=False):
ui['fp_guidance_preset'] = gr.Dropdown(
label="Preset de Guiagem",
choices=["Padrão (Recomendado)", "Agressivo", "Suave", "Customizado"],
value="Padrão (Recomendado)",
info="Controla como a guiagem de texto se comporta ao longo da difusão."
)
with gr.Group(visible=False) as ui['custom_guidance_group']:
gr.Markdown("⚠️ Edite as listas em formato JSON. Ex: `[1.0, 2.5, 3.0]`")
ui['fp_guidance_scale_list'] = gr.Textbox(label="Lista de Guidance Scale", value="[1, 1, 6, 8, 6, 1, 1]")
ui['fp_stg_scale_list'] = gr.Textbox(label="Lista de STG Scale (Movimento)", value="[0, 0, 4, 4, 4, 2, 1]")
ui['generate_low_btn'] = gr.Button("1. Gerar Vídeo Base", variant="primary")
def _build_postprod_controls(ui: dict):
"""Builds the UI components for Step 2: Post-Production."""
with gr.Group(visible=False) as ui['post_prod_group']:
gr.Markdown("--- \n## Etapa 2: Pós-Produção", elem_id="postprod-title")
with gr.Tabs():
with gr.TabItem("🚀 Upscaler de Textura (LTX)"):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("Usa o prompt e a semente originais para refinar o vídeo, adicionando detalhes e texturas de alta qualidade.")
ui['ltx_refine_btn'] = gr.Button("2. Aplicar Refinamento LTX", variant="primary")
with gr.Column(scale=1):
ui['ltx_refined_video_output'] = gr.Video(label="Vídeo com Textura Refinada", interactive=False)
with gr.TabItem("✨ Upscaler de Resolução (SeedVR)"):
is_seedvr_available = seedvr_inference_server is not None
if not is_seedvr_available:
gr.Markdown("🔴 *O serviço SeedVR não está disponível nesta instância.*")
with gr.Row():
with gr.Column(scale=1):
ui['seedvr_seed'] = gr.Slider(minimum=0, maximum=999999, value=42, step=1, label="Seed")
ui['seedvr_resolution'] = gr.Slider(minimum=720, maximum=1440, value=1072, step=8, label="Resolução Vertical")
ui['seedvr_batch_size'] = gr.Slider(minimum=1, maximum=16, value=4, step=1, label="Batch Size por GPU")
ui['seedvr_fps'] = gr.Number(label="FPS de Saída (0 = original)", value=0)
ui['run_seedvr_btn'] = gr.Button("2. Iniciar Upscaling SeedVR", variant="primary", interactive=is_seedvr_available)
with gr.Column(scale=1):
ui['seedvr_video_output'] = gr.Video(label="Vídeo com Upscale SeedVR", interactive=False)
ui['seedvr_status_box'] = gr.Textbox(label="Status", value="Aguardando...", lines=3, interactive=False)
# ==============================================================================
# --- EVENT HANDLERS ---
# Connects UI component events (like clicks) to the wrapper functions.
# ==============================================================================
def _register_event_handlers(app_state: gr.State, ui: dict):
"""Registers all Gradio event handlers."""
# --- Handler for custom guidance visibility ---
def toggle_custom_guidance(preset_choice: str) -> gr.update:
return gr.update(visible=(preset_choice == "Customizado"))
ui['fp_guidance_preset'].change(
fn=toggle_custom_guidance,
inputs=ui['fp_guidance_preset'],
outputs=ui['custom_guidance_group']
)
# --- Handler for the main "Generate" button ---
gen_inputs = [
ui['generation_mode'], ui['prompt'], ui['neg_prompt'], ui['start_image'],
ui['height'], ui['width'], ui['duration'], ui['seed'], ui['randomize_seed'],
ui['fp_guidance_preset'], ui['fp_guidance_scale_list'], ui['fp_stg_scale_list']
]
gen_outputs = [
ui['low_res_video_output'], app_state, ui['post_prod_group']
]
ui['generate_low_btn'].click(fn=run_generate_base_video, inputs=gen_inputs, outputs=gen_outputs)
# --- Handler for the LTX Refine button ---
refine_inputs = [app_state, ui['prompt'], ui['neg_prompt']]
refine_outputs = [ui['ltx_refined_video_output'], app_state]
ui['ltx_refine_btn'].click(fn=run_ltx_refinement, inputs=refine_inputs, outputs=refine_outputs)
# --- Handler for the SeedVR Upscale button ---
if 'run_seedvr_btn' in ui:
seedvr_inputs = [app_state, ui['seedvr_seed'], ui['seedvr_resolution'], ui['seedvr_batch_size'], ui['seedvr_fps']]
seedvr_outputs = [ui['seedvr_video_output'], ui['seedvr_status_box']]
ui['run_seedvr_btn'].click(fn=run_seedvr_upscaling, inputs=seedvr_inputs, outputs=seedvr_outputs)
# ==============================================================================
# --- APPLICATION ENTRY POINT ---
# ==============================================================================
if __name__ == "__main__":
print("Building Gradio UI...")
gradio_app = build_ui()
print("Launching Gradio app...")
gradio_app.queue().launch(
server_name="0.0.0.0",
server_port=7860,
debug=True,
show_error=True
) |