Spaces:
Paused
Paused
| # video_service.py | |
| # --- 1. IMPORTAÇÕES --- | |
| import torch | |
| import numpy as np | |
| import random | |
| import os | |
| import yaml | |
| from pathlib import Path | |
| import imageio | |
| import tempfile | |
| from huggingface_hub import hf_hub_download | |
| import sys | |
| import subprocess | |
| # --- 2. GERENCIAMENTO DE DEPENDÊNCIAS E SETUP --- | |
| def run_setup(): | |
| """Executa o script setup.py para clonar as dependências necessárias.""" | |
| setup_script_path = "setup.py" | |
| if not os.path.exists(setup_script_path): | |
| print("AVISO: script 'setup.py' não encontrado. Pulando a clonagem de dependências.") | |
| return | |
| try: | |
| print("--- Executando setup.py para garantir que as dependências estão presentes ---") | |
| subprocess.run([sys.executable, setup_script_path], check=True) | |
| print("--- Setup concluído com sucesso ---") | |
| except subprocess.CalledProcessError as e: | |
| print(f"ERRO CRÍTICO DURANTE O SETUP: 'setup.py' falhou com código {e.returncode}.") | |
| sys.exit(1) | |
| DEPS_DIR = Path("./deps") | |
| LTX_VIDEO_REPO_DIR = DEPS_DIR / "LTX-Video" | |
| if not LTX_VIDEO_REPO_DIR.exists(): | |
| run_setup() | |
| def add_deps_to_path(): | |
| """Adiciona o repositório clonado ao sys.path para que suas bibliotecas possam ser importadas.""" | |
| if not LTX_VIDEO_REPO_DIR.exists(): | |
| raise FileNotFoundError(f"Repositório LTX-Video não encontrado em '{LTX_VIDEO_REPO_DIR}'. Execute o setup.") | |
| if str(LTX_VIDEO_REPO_DIR.resolve()) not in sys.path: | |
| sys.path.insert(0, str(LTX_VIDEO_REPO_DIR.resolve())) | |
| add_deps_to_path() | |
| # --- 3. IMPORTAÇÕES ESPECÍFICAS DO MODELO --- | |
| from inference import ( | |
| create_ltx_video_pipeline, create_latent_upsampler, | |
| load_image_to_tensor_with_resize_and_crop, seed_everething, | |
| calculate_padding, load_media_file | |
| ) | |
| from ltx_video.pipelines.pipeline_ltx_video import ConditioningItem, LTXMultiScalePipeline | |
| from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy | |
| # --- 4. FUNÇÕES HELPER DE LOG --- | |
| def log_tensor_info(tensor, name="Tensor"): | |
| if not isinstance(tensor, torch.Tensor): | |
| print(f"\n[INFO] O item '{name}' não é um tensor para logar.") | |
| return | |
| print(f"\n--- Informações do Tensor: {name} ---") | |
| print(f" - Shape: {tensor.shape}") | |
| print(f" - Dtype: {tensor.dtype}") | |
| print(f" - Device: {tensor.device}") | |
| if tensor.numel() > 0: | |
| print(f" - Min valor: {tensor.min().item():.4f}") | |
| print(f" - Max valor: {tensor.max().item():.4f}") | |
| print(f" - Média: {tensor.mean().item():.4f}") | |
| else: | |
| print(" - O tensor está vazio, sem estatísticas.") | |
| print("------------------------------------------\n") | |
| # --- 5. CLASSE PRINCIPAL DO SERVIÇO --- | |
| class VideoService: | |
| def __init__(self): | |
| print("Inicializando VideoService...") | |
| self.config = self._load_config() | |
| self.device = "cuda" if torch.cuda.is_available() else "cpu" | |
| self.last_memory_reserved_mb = 0 | |
| self.pipeline, self.latent_upsampler = self._load_models() | |
| print(f"Movendo modelos para o dispositivo de inferência: {self.device}") | |
| self.pipeline.to(self.device) | |
| if self.latent_upsampler: | |
| self.latent_upsampler.to(self.device) | |
| if self.device == "cuda": | |
| torch.cuda.empty_cache() | |
| self._log_gpu_memory("Após carregar modelos") | |
| print("VideoService pronto para uso.") | |
| def _log_gpu_memory(self, stage_name: str): | |
| if self.device != "cuda": return | |
| current_reserved_b = torch.cuda.memory_reserved() | |
| current_reserved_mb = current_reserved_b / (1024 ** 2) | |
| total_memory_b = torch.cuda.get_device_properties(0).total_memory | |
| total_memory_mb = total_memory_b / (1024 ** 2) | |
| peak_reserved_mb = torch.cuda.max_memory_reserved() / (1024 ** 2) | |
| delta_mb = current_reserved_mb - self.last_memory_reserved_mb | |
| print(f"\n--- [LOG DE MEMÓRIA GPU] - {stage_name} ---") | |
| print(f" - Uso Atual (Reservado): {current_reserved_mb:.2f} MB / {total_memory_mb:.2f} MB") | |
| print(f" - Variação desde o último log: {delta_mb:+.2f} MB") | |
| if peak_reserved_mb > self.last_memory_reserved_mb: | |
| print(f" - Pico de Uso (nesta operação): {peak_reserved_mb:.2f} MB") | |
| print("--------------------------------------------------\n") | |
| self.last_memory_reserved_mb = current_reserved_mb | |
| def _load_config(self): | |
| config_file_path = LTX_VIDEO_REPO_DIR / "configs" / "ltxv-13b-0.9.8-distilled.yaml" | |
| with open(config_file_path, "r") as file: | |
| return yaml.safe_load(file) | |
| def _load_models(self): | |
| models_dir = "downloaded_models_gradio" | |
| Path(models_dir).mkdir(parents=True, exist_ok=True) | |
| LTX_REPO = "Lightricks/LTX-Video" | |
| distilled_model_path = hf_hub_download(repo_id=LTX_REPO, filename=self.config["checkpoint_path"], local_dir=models_dir, local_dir_use_symlinks=False) | |
| self.config["checkpoint_path"] = distilled_model_path | |
| spatial_upscaler_path = hf_hub_download(repo_id=LTX_REPO, filename=self.config["spatial_upscaler_model_path"], local_dir=models_dir, local_dir_use_symlinks=False) | |
| self.config["spatial_upscaler_model_path"] = spatial_upscaler_path | |
| pipeline = create_ltx_video_pipeline(ckpt_path=self.config["checkpoint_path"], precision=self.config["precision"], text_encoder_model_name_or_path=self.config["text_encoder_model_name_or_path"], sampler=self.config["sampler"], device="cpu", enhance_prompt=False, prompt_enhancer_image_caption_model_name_or_path=self.config["prompt_enhancer_image_caption_model_name_or_path"], prompt_enhancer_llm_model_name_or_path=self.config["prompt_enhancer_llm_model_name_or_path"]) | |
| latent_upsampler = None | |
| if self.config.get("spatial_upscaler_model_path"): | |
| latent_upsampler = create_latent_upsampler(self.config["spatial_upscaler_model_path"], device="cpu") | |
| return pipeline, latent_upsampler | |
| def _prepare_conditioning_tensor(self, filepath, height, width, padding_values): | |
| tensor = load_image_to_tensor_with_resize_and_crop(filepath, height, width) | |
| tensor = torch.nn.functional.pad(tensor, padding_values) | |
| return tensor.to(self.device) | |
| def generate(self, prompt, negative_prompt, mode="text-to-video", | |
| start_image_filepath=None, | |
| middle_image_filepath=None, middle_frame_number=None, middle_image_weight=1.0, | |
| end_image_filepath=None, end_image_weight=1.0, | |
| input_video_filepath=None, height=512, width=704, duration=2.0, | |
| frames_to_use=9, seed=42, randomize_seed=True, guidance_scale=3.0, | |
| improve_texture=True, progress_callback=None): | |
| if self.device == "cuda": | |
| torch.cuda.empty_cache() | |
| torch.cuda.reset_peak_memory_stats() | |
| self._log_gpu_memory("Início da Geração") | |
| if mode == "image-to-video" and not start_image_filepath: | |
| raise ValueError("A imagem de início é obrigatória para o modo image-to-video") | |
| if mode == "video-to-video" and not input_video_filepath: | |
| raise ValueError("O vídeo de entrada é obrigatório para o modo video-to-video") | |
| used_seed = random.randint(0, 2**32 - 1) if randomize_seed else int(seed) | |
| seed_everething(used_seed) | |
| FPS = 24.0 | |
| MAX_NUM_FRAMES = 257 | |
| target_frames_rounded = round(duration * FPS) | |
| n_val = round((float(target_frames_rounded) - 1.0) / 8.0) | |
| actual_num_frames = max(9, min(MAX_NUM_FRAMES, int(n_val * 8 + 1))) | |
| height_padded = ((height - 1) // 32 + 1) * 32 | |
| width_padded = ((width - 1) // 32 + 1) * 32 | |
| padding_values = calculate_padding(height, width, height_padded, width_padded) | |
| generator = torch.Generator(device=self.device).manual_seed(used_seed) | |
| conditioning_items = [] | |
| if mode == "image-to-video": | |
| start_tensor = self._prepare_conditioning_tensor(start_image_filepath, height, width, padding_values) | |
| conditioning_items.append(ConditioningItem(start_tensor, 0, 1.0)) | |
| if middle_image_filepath and middle_frame_number is not None: | |
| middle_tensor = self._prepare_conditioning_tensor(middle_image_filepath, height, width, padding_values) | |
| safe_middle_frame = max(0, min(int(middle_frame_number), actual_num_frames - 1)) | |
| conditioning_items.append(ConditioningItem(middle_tensor, safe_middle_frame, float(middle_image_weight))) | |
| if end_image_filepath: | |
| end_tensor = self._prepare_conditioning_tensor(end_image_filepath, height, width, padding_values) | |
| last_frame_index = actual_num_frames - 1 | |
| conditioning_items.append(ConditioningItem(end_tensor, last_frame_index, float(end_image_weight))) | |
| call_kwargs = { | |
| "prompt": prompt, "negative_prompt": negative_prompt, "height": height_padded, "width": width_padded, | |
| "num_frames": actual_num_frames, "frame_rate": int(FPS), "generator": generator, "output_type": "pt", | |
| "conditioning_items": conditioning_items if conditioning_items else None, | |
| "media_items": None, | |
| "decode_timestep": self.config["decode_timestep"], "decode_noise_scale": self.config["decode_noise_scale"], | |
| "stochastic_sampling": self.config["stochastic_sampling"], "image_cond_noise_scale": 0.15, | |
| "is_video": True, "vae_per_channel_normalize": True, | |
| "mixed_precision": (self.config["precision"] == "mixed_precision"), | |
| "offload_to_cpu": False, "enhance_prompt": False, | |
| "skip_layer_strategy": SkipLayerStrategy.AttentionValues | |
| } | |
| if mode == "video-to-video": | |
| call_kwargs["media_items"] = load_media_file(media_path=input_video_filepath, height=height, width=width, max_frames=int(frames_to_use), padding=padding_values).to(self.device) | |
| result_tensor = None | |
| if improve_texture: | |
| if not self.latent_upsampler: | |
| raise ValueError("Upscaler espacial não carregado.") | |
| multi_scale_pipeline = LTXMultiScalePipeline(self.pipeline, self.latent_upsampler) | |
| first_pass_args = self.config.get("first_pass", {}).copy() | |
| first_pass_args["guidance_scale"] = float(guidance_scale) | |
| second_pass_args = self.config.get("second_pass", {}).copy() | |
| second_pass_args["guidance_scale"] = float(guidance_scale) | |
| multi_scale_call_kwargs = call_kwargs.copy() | |
| multi_scale_call_kwargs.update({"downscale_factor": self.config["downscale_factor"], "first_pass": first_pass_args, "second_pass": second_pass_args}) | |
| result_tensor = multi_scale_pipeline(**multi_scale_call_kwargs).images | |
| log_tensor_info(result_tensor, "Resultado da Etapa 2 (Saída do Pipeline Multi-Scale)") | |
| else: | |
| single_pass_kwargs = call_kwargs.copy() | |
| first_pass_config = self.config.get("first_pass", {}) | |
| single_pass_kwargs.update({ | |
| "guidance_scale": float(guidance_scale), | |
| "stg_scale": first_pass_config.get("stg_scale"), | |
| "rescaling_scale": first_pass_config.get("rescaling_scale"), | |
| "skip_block_list": first_pass_config.get("skip_block_list"), | |
| }) | |
| # --- <INÍCIO DA CORREÇÃO> --- | |
| if mode == "video-to-video": | |
| single_pass_kwargs["timesteps"] = [0.7] # CORRIGIDO: Passar como uma lista | |
| print("[INFO] Modo video-to-video (etapa única): definindo timesteps (força) para [0.7]") | |
| else: | |
| single_pass_kwargs["timesteps"] = first_pass_config.get("timesteps") | |
| # --- <FIM DA CORREÇÃO> --- | |
| print("\n[INFO] Executando pipeline de etapa única...") | |
| result_tensor = self.pipeline(**single_pass_kwargs).images | |
| pad_left, pad_right, pad_top, pad_bottom = padding_values | |
| slice_h_end = -pad_bottom if pad_bottom > 0 else None | |
| slice_w_end = -pad_right if pad_right > 0 else None | |
| result_tensor = result_tensor[:, :, :actual_num_frames, pad_top:slice_h_end, pad_left:slice_w_end] | |
| log_tensor_info(result_tensor, "Tensor Final (Após Pós-processamento, Antes de Salvar)") | |
| video_np = (result_tensor[0].permute(1, 2, 3, 0).cpu().float().numpy() * 255).astype(np.uint8) | |
| temp_dir = tempfile.mkdtemp() | |
| output_video_path = os.path.join(temp_dir, f"output_{used_seed}.mp4") | |
| with imageio.get_writer(output_video_path, fps=call_kwargs["frame_rate"], codec='libx264', quality=8) as writer: | |
| total_frames = len(video_np) | |
| for i, frame in enumerate(video_np): | |
| writer.append_data(frame) | |
| if progress_callback: | |
| progress_callback(i + 1, total_frames) | |
| self._log_gpu_memory("Fim da Geração") | |
| return output_video_path, used_seed | |
| print("Criando instância do VideoService. O carregamento do modelo começará agora...") | |
| video_generation_service = VideoService() |