EuuIia commited on
Commit
1797675
·
verified ·
1 Parent(s): b46d413

Update video_service.py

Browse files
Files changed (1) hide show
  1. video_service.py +181 -197
video_service.py CHANGED
@@ -1,5 +1,6 @@
1
  # video_service.py
2
 
 
3
  import torch
4
  import numpy as np
5
  import random
@@ -8,15 +9,14 @@ import yaml
8
  from pathlib import Path
9
  import imageio
10
  import tempfile
 
11
  import sys
12
  import subprocess
13
- import threading
14
- import time
15
- from huggingface_hub import hf_hub_download
16
 
17
- # --- LÓGICA DE SETUP E DEPENDÊNCIAS ---
18
 
19
  def run_setup():
 
20
  setup_script_path = "setup.py"
21
  if not os.path.exists(setup_script_path):
22
  print("AVISO: script 'setup.py' não encontrado. Pulando a clonagem de dependências.")
@@ -35,6 +35,7 @@ if not LTX_VIDEO_REPO_DIR.exists():
35
  run_setup()
36
 
37
  def add_deps_to_path():
 
38
  if not LTX_VIDEO_REPO_DIR.exists():
39
  raise FileNotFoundError(f"Repositório LTX-Video não encontrado em '{LTX_VIDEO_REPO_DIR}'. Execute o setup.")
40
  if str(LTX_VIDEO_REPO_DIR.resolve()) not in sys.path:
@@ -42,221 +43,204 @@ def add_deps_to_path():
42
 
43
  add_deps_to_path()
44
 
45
- # Importações específicas do modelo
46
  from inference import (
47
  create_ltx_video_pipeline, create_latent_upsampler,
48
  load_image_to_tensor_with_resize_and_crop, seed_everething,
49
  calculate_padding, load_media_file
50
  )
51
- from ltx_video.pipelines.pipeline_ltx_video import ConditioningItem
52
  from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy
53
 
54
- # --- CONFIGURAÇÃO DA DISTRIBUIÇÃO DE GPUS ---
55
- GPU_MAPPING = [
56
- {'base': 'cuda:0', 'upscaler': 'cuda:2'},
57
- {'base': 'cuda:1', 'upscaler': 'cuda:3'}
58
- ]
59
-
 
 
 
 
 
 
 
 
 
 
 
 
60
  class VideoService:
61
  def __init__(self):
62
- print("Inicializando VideoService (modo Lazy Loading)...")
63
- self.models_loaded = False
64
- self.workers = None
65
  self.config = self._load_config()
66
- self.models_dir = "downloaded_models"
67
- self.loading_lock = threading.Lock() # Para evitar que múltiplos usuários iniciem o carregamento ao mesmo tempo
68
-
69
- def _ensure_models_are_loaded(self):
70
- """Verifica se os modelos estão carregados e os carrega se não estiverem."""
71
- with self.loading_lock:
72
- if not self.models_loaded:
73
- print("Primeira requisição recebida. Iniciando carregamento dos modelos...")
74
- if torch.cuda.is_available() and torch.cuda.device_count() < 4:
75
- raise RuntimeError(f"Este serviço está configurado para 4 GPUs, mas apenas {torch.cuda.device_count()} foram encontradas.")
76
-
77
- self._download_model_files()
78
- self.workers = self._initialize_workers()
79
- self.models_loaded = True
80
- print(f"Modelos carregados com sucesso. {len(self.workers)} workers prontos.")
 
 
 
 
 
 
 
 
 
 
 
 
81
 
82
  def _load_config(self):
83
  config_file_path = LTX_VIDEO_REPO_DIR / "configs" / "ltxv-13b-0.9.8-distilled.yaml"
84
  with open(config_file_path, "r") as file:
85
  return yaml.safe_load(file)
86
 
87
- def _download_model_files(self):
88
- Path(self.models_dir).mkdir(parents=True, exist_ok=True)
 
89
  LTX_REPO = "Lightricks/LTX-Video"
90
- print("Baixando arquivos de modelo (se necessário)...")
91
- self.distilled_model_path = hf_hub_download(repo_id=LTX_REPO, filename=self.config["checkpoint_path"], local_dir=self.models_dir)
92
- self.spatial_upscaler_path = hf_hub_download(repo_id=LTX_REPO, filename=self.config["spatial_upscaler_model_path"], local_dir=self.models_dir)
93
- print("Download de modelos concluído.")
94
-
95
- def _load_models_for_worker(self, base_device, upscaler_device):
96
- print(f"Carregando modelo base para {base_device} e upscaler para {upscaler_device}")
97
- pipeline = create_ltx_video_pipeline(
98
- ckpt_path=self.distilled_model_path, precision=self.config["precision"],
99
- text_encoder_model_name_or_path=self.config["text_encoder_model_name_or_path"],
100
- sampler=self.config["sampler"], device="cpu", enhance_prompt=False,
101
- prompt_enhancer_image_caption_model_name_or_path=self.config["prompt_enhancer_image_caption_model_name_or_path"],
102
- prompt_enhancer_llm_model_name_or_path=self.config["prompt_enhancer_llm_model_name_or_path"],
103
- )
104
- latent_upsampler = create_latent_upsampler(self.spatial_upscaler_path, device="cpu")
105
- pipeline.to(base_device)
106
- latent_upsampler.to(upscaler_device)
107
  return pipeline, latent_upsampler
108
-
109
- def _initialize_workers(self):
110
- workers = []
111
- for i, mapping in enumerate(GPU_MAPPING):
112
- print(f"--- Inicializando Worker {i} ---")
113
- pipeline, latent_upsampler = self._load_models_for_worker(mapping['base'], mapping['upscaler'])
114
- workers.append({"id": i, "base_pipeline": pipeline, "latent_upsampler": latent_upsampler, "devices": mapping, "lock": threading.Lock()})
115
- return workers
116
-
117
- def _acquire_worker(self):
118
- while True:
119
- for worker in self.workers:
120
- if worker["lock"].acquire(blocking=False):
121
- print(f"Worker {worker['id']} adquirido para uma nova tarefa.")
122
- return worker
123
- time.sleep(0.1)
124
-
125
- def generate(self, prompt, negative_prompt, input_image_filepath=None, input_video_filepath=None,
126
- height=512, width=704, mode="text-to-video", duration=2.0,
127
- frames_to_use=9, seed=42, randomize_seed=True, guidance_scale=1.0, # Ignorado, mas mantido por compatibilidade
128
  improve_texture=True, progress_callback=None):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
129
 
130
- # A MÁGICA DO LAZY LOADING ACONTECE AQUI
131
- self._ensure_models_are_loaded()
 
132
 
133
- worker = self._acquire_worker()
134
- base_device = worker['devices']['base']
135
- upscaler_device = worker['devices']['upscaler']
136
 
137
- try:
138
- # ... (todo o resto do código da função generate permanece exatamente o mesmo) ...
139
- if mode == "image-to-video" and not input_image_filepath: raise ValueError("Caminho da imagem é obrigatório para o modo image-to-video")
140
- if mode == "video-to-video" and not input_video_filepath: raise ValueError("Caminho do vídeo é obrigatório para o modo video-to-video")
141
-
142
- used_seed = random.randint(0, 2**32 - 1) if randomize_seed else int(seed)
143
- seed_everething(used_seed)
144
-
145
- FPS = 24.0; MAX_NUM_FRAMES = 257
146
- target_frames_rounded = round(duration * FPS)
147
- n_val = round((float(target_frames_rounded) - 1.0) / 8.0)
148
- actual_num_frames = max(9, min(MAX_NUM_FRAMES, int(n_val * 8 + 1)))
149
-
150
- height_padded = ((height - 1) // 32 + 1) * 32
151
- width_padded = ((width - 1) // 32 + 1) * 32
152
- padding_values = calculate_padding(height, width, height_padded, width_padded)
153
- pad_left, pad_right, pad_top, pad_bottom = padding_values
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
154
 
155
- call_kwargs_base = {
156
- "prompt": prompt, "negative_prompt": negative_prompt, "num_frames": actual_num_frames, "frame_rate": int(FPS),
157
- "decode_timestep": 0.05, "decode_noise_scale": self.config["decode_noise_scale"],
158
- "stochastic_sampling": self.config["stochastic_sampling"], "image_cond_noise_scale": 0.025,
159
- "is_video": True, "vae_per_channel_normalize": True, "mixed_precision": (self.config["precision"] == "mixed_precision"),
160
- "offload_to_cpu": False, "enhance_prompt": False, "skip_layer_strategy": SkipLayerStrategy.AttentionValues
161
- }
162
-
163
- result_tensor = None
164
- if improve_texture:
165
- downscale_factor = self.config.get("downscale_factor", 0.5)
166
- downscaled_height_ideal = int(height_padded * downscale_factor); downscaled_width_ideal = int(width_padded * downscale_factor)
167
- downscaled_height = ((downscaled_height_ideal - 1) // 32 + 1) * 32; downscaled_width = ((downscaled_width_ideal - 1) // 32 + 1) * 32
168
-
169
- # --- PASSE 1 ---
170
- first_pass_kwargs = call_kwargs_base.copy()
171
- first_pass_kwargs.update({
172
- "height": downscaled_height, "width": downscaled_width,
173
- "generator": torch.Generator(device=base_device).manual_seed(used_seed),
174
- "output_type": "latent", "guidance_scale": 1.0,
175
- "timesteps": self.config["first_pass"]["timesteps"],
176
- "stg_scale": self.config["first_pass"]["stg_scale"],
177
- "rescaling_scale": self.config["first_pass"]["rescaling_scale"],
178
- "skip_block_list": self.config["first_pass"]["skip_block_list"]
179
- })
180
-
181
- if mode == "image-to-video":
182
- padding_low_res = calculate_padding(downscaled_height, downscaled_width, downscaled_height, downscaled_width)
183
- media_tensor_low_res = load_image_to_tensor_with_resize_and_crop(input_image_filepath, downscaled_height, downscaled_width)
184
- media_tensor_low_res = torch.nn.functional.pad(media_tensor_low_res, padding_low_res)
185
- first_pass_kwargs["conditioning_items"] = [ConditioningItem(media_tensor_low_res.to(base_device), 0, 1.0)]
186
-
187
- print(f"Worker {worker['id']}: Iniciando passe 1 em {base_device}")
188
- with torch.no_grad(): low_res_latents = worker['base_pipeline'](**first_pass_kwargs).images
189
-
190
- low_res_latents = low_res_latents.to(upscaler_device)
191
- with torch.no_grad(): high_res_latents = worker['latent_upsampler'](low_res_latents)
192
- high_res_latents = high_res_latents.to(base_device)
193
-
194
- # --- PASSE 2 ---
195
- second_pass_kwargs = call_kwargs_base.copy()
196
- high_res_h, high_res_w = downscaled_height * 2, downscaled_width * 2
197
- second_pass_kwargs.update({
198
- "height": high_res_h, "width": high_res_w, "latents": high_res_latents,
199
- "generator": torch.Generator(device=base_device).manual_seed(used_seed),
200
- "output_type": "pt", "image_cond_noise_scale": 0.0, "guidance_scale": 1.0,
201
- "timesteps": self.config["second_pass"]["timesteps"],
202
- "stg_scale": self.config["second_pass"]["stg_scale"],
203
- "rescaling_scale": self.config["second_pass"]["rescaling_scale"],
204
- "skip_block_list": self.config["second_pass"]["skip_block_list"],
205
- "tone_map_compression_ratio": self.config["second_pass"].get("tone_map_compression_ratio", 0.0)
206
- })
207
-
208
- if mode == "image-to-video":
209
- padding_high_res = calculate_padding(high_res_h, high_res_w, high_res_h, high_res_w)
210
- media_tensor_high_res = load_image_to_tensor_with_resize_and_crop(input_image_filepath, high_res_h, high_res_w)
211
- media_tensor_high_res = torch.nn.functional.pad(media_tensor_high_res, padding_high_res)
212
- second_pass_kwargs["conditioning_items"] = [ConditioningItem(media_tensor_high_res.to(base_device), 0, 1.0)]
213
-
214
- print(f"Worker {worker['id']}: Iniciando passe 2 em {base_device}")
215
- with torch.no_grad(): result_tensor = worker['base_pipeline'](**second_pass_kwargs).images
216
-
217
- else: # Passe Único
218
- single_pass_kwargs = call_kwargs_base.copy()
219
- first_pass_config = self.config["first_pass"]
220
- single_pass_kwargs.update({
221
- "height": height_padded, "width": width_padded, "output_type": "pt",
222
- "generator": torch.Generator(device=base_device).manual_seed(used_seed),
223
- "guidance_scale": 1.0, **first_pass_config
224
- })
225
- if mode == "image-to-video":
226
- media_tensor_final = load_image_to_tensor_with_resize_and_crop(input_image_filepath, height_padded, width_padded)
227
- media_tensor_final = torch.nn.functional.pad(media_tensor_final, padding_values)
228
- single_pass_kwargs["conditioning_items"] = [ConditioningItem(media_tensor_final.to(base_device), 0, 1.0)]
229
- elif mode == "video-to-video":
230
- single_pass_kwargs["media_items"] = load_media_file(media_path=input_video_filepath, height=height_padded, width=width_padded, max_frames=int(frames_to_use), padding=padding_values).to(base_device)
231
-
232
- print(f"Worker {worker['id']}: Iniciando passe único em {base_device}")
233
- with torch.no_grad(): result_tensor = worker['base_pipeline'](**single_pass_kwargs).images
234
-
235
- if result_tensor.shape[-2:] != (height, width):
236
- num_frames_final = result_tensor.shape[2]
237
- videos_tensor = result_tensor.permute(0, 2, 1, 3, 4).reshape(-1, result_tensor.shape[1], result_tensor.shape[3], result_tensor.shape[4])
238
- videos_resized = torch.nn.functional.interpolate(videos_tensor, size=(height, width), mode='bilinear', align_corners=False)
239
- result_tensor = videos_resized.reshape(result_tensor.shape[0], num_frames_final, result_tensor.shape[1], height, width).permute(0, 2, 1, 3, 4)
240
-
241
- result_tensor = result_tensor[:, :, :actual_num_frames, (pad_top if pad_top > 0 else None):(-pad_bottom if pad_bottom > 0 else None), (pad_left if pad_left > 0 else None):(-pad_right if pad_right > 0 else None)]
242
- video_np = (result_tensor[0].permute(1, 2, 3, 0).cpu().float().numpy() * 255).astype(np.uint8)
243
- temp_dir = tempfile.mkdtemp()
244
- output_video_path = os.path.join(temp_dir, f"output_{used_seed}.mp4")
245
-
246
- with imageio.get_writer(output_video_path, fps=call_kwargs_base["frame_rate"], codec='libx264', quality=8) as writer:
247
- for i, frame in enumerate(video_np):
248
- writer.append_data(frame)
249
- if progress_callback: progress_callback(i + 1, len(video_np))
250
- return output_video_path, used_seed
251
-
252
- except Exception as e:
253
- print(f"!!!!!!!! ERRO no Worker {worker['id']} !!!!!!!!\n{e}")
254
- raise e
255
- finally:
256
- print(f"Worker {worker['id']}: Tarefa finalizada. Limpando cache e liberando worker...")
257
- with torch.cuda.device(base_device): torch.cuda.empty_cache()
258
- with torch.cuda.device(upscaler_device): torch.cuda.empty_cache()
259
- worker["lock"].release()
260
 
261
- # A instância do serviço é criada aqui, mas os modelos só serão carregados no primeiro clique.
262
  video_generation_service = VideoService()
 
1
  # video_service.py
2
 
3
+ # --- 1. IMPORTAÇÕES ---
4
  import torch
5
  import numpy as np
6
  import random
 
9
  from pathlib import Path
10
  import imageio
11
  import tempfile
12
+ from huggingface_hub import hf_hub_download
13
  import sys
14
  import subprocess
 
 
 
15
 
16
+ # --- 2. GERENCIAMENTO DE DEPENDÊNCIAS E SETUP ---
17
 
18
  def run_setup():
19
+ """Executa o script setup.py para clonar as dependências necessárias."""
20
  setup_script_path = "setup.py"
21
  if not os.path.exists(setup_script_path):
22
  print("AVISO: script 'setup.py' não encontrado. Pulando a clonagem de dependências.")
 
35
  run_setup()
36
 
37
  def add_deps_to_path():
38
+ """Adiciona o repositório clonado ao sys.path para que suas bibliotecas possam ser importadas."""
39
  if not LTX_VIDEO_REPO_DIR.exists():
40
  raise FileNotFoundError(f"Repositório LTX-Video não encontrado em '{LTX_VIDEO_REPO_DIR}'. Execute o setup.")
41
  if str(LTX_VIDEO_REPO_DIR.resolve()) not in sys.path:
 
43
 
44
  add_deps_to_path()
45
 
46
+ # --- 3. IMPORTAÇÕES ESPECÍFICAS DO MODELO ---
47
  from inference import (
48
  create_ltx_video_pipeline, create_latent_upsampler,
49
  load_image_to_tensor_with_resize_and_crop, seed_everething,
50
  calculate_padding, load_media_file
51
  )
52
+ from ltx_video.pipelines.pipeline_ltx_video import ConditioningItem, LTXMultiScalePipeline
53
  from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy
54
 
55
+ # --- 4. FUNÇÕES HELPER DE LOG ---
56
+ def log_tensor_info(tensor, name="Tensor"):
57
+ if not isinstance(tensor, torch.Tensor):
58
+ print(f"\n[INFO] O item '{name}' não é um tensor para logar.")
59
+ return
60
+ print(f"\n--- Informações do Tensor: {name} ---")
61
+ print(f" - Shape: {tensor.shape}")
62
+ print(f" - Dtype: {tensor.dtype}")
63
+ print(f" - Device: {tensor.device}")
64
+ if tensor.numel() > 0:
65
+ print(f" - Min valor: {tensor.min().item():.4f}")
66
+ print(f" - Max valor: {tensor.max().item():.4f}")
67
+ print(f" - Média: {tensor.mean().item():.4f}")
68
+ else:
69
+ print(" - O tensor está vazio, sem estatísticas.")
70
+ print("------------------------------------------\n")
71
+
72
+ # --- 5. CLASSE PRINCIPAL DO SERVIÇO ---
73
  class VideoService:
74
  def __init__(self):
75
+ print("Inicializando VideoService...")
 
 
76
  self.config = self._load_config()
77
+ self.device = "cuda" if torch.cuda.is_available() else "cpu"
78
+ self.last_memory_reserved_mb = 0
79
+ self.pipeline, self.latent_upsampler = self._load_models()
80
+ print(f"Movendo modelos para o dispositivo de inferência: {self.device}")
81
+ self.pipeline.to(self.device)
82
+ if self.latent_upsampler:
83
+ self.latent_upsampler.to(self.device)
84
+ if self.device == "cuda":
85
+ torch.cuda.empty_cache()
86
+ self._log_gpu_memory("Após carregar modelos")
87
+ print("VideoService pronto para uso.")
88
+
89
+ def _log_gpu_memory(self, stage_name: str):
90
+ if self.device != "cuda": return
91
+ current_reserved_b = torch.cuda.memory_reserved()
92
+ current_reserved_mb = current_reserved_b / (1024 ** 2)
93
+ total_memory_b = torch.cuda.get_device_properties(0).total_memory
94
+ total_memory_mb = total_memory_b / (1024 ** 2)
95
+ peak_reserved_mb = torch.cuda.max_memory_reserved() / (1024 ** 2)
96
+ delta_mb = current_reserved_mb - self.last_memory_reserved_mb
97
+ print(f"\n--- [LOG DE MEMÓRIA GPU] - {stage_name} ---")
98
+ print(f" - Uso Atual (Reservado): {current_reserved_mb:.2f} MB / {total_memory_mb:.2f} MB")
99
+ print(f" - Variação desde o último log: {delta_mb:+.2f} MB")
100
+ if peak_reserved_mb > self.last_memory_reserved_mb:
101
+ print(f" - Pico de Uso (nesta operação): {peak_reserved_mb:.2f} MB")
102
+ print("--------------------------------------------------\n")
103
+ self.last_memory_reserved_mb = current_reserved_mb
104
 
105
  def _load_config(self):
106
  config_file_path = LTX_VIDEO_REPO_DIR / "configs" / "ltxv-13b-0.9.8-distilled.yaml"
107
  with open(config_file_path, "r") as file:
108
  return yaml.safe_load(file)
109
 
110
+ def _load_models(self):
111
+ models_dir = "downloaded_models_gradio"
112
+ Path(models_dir).mkdir(parents=True, exist_ok=True)
113
  LTX_REPO = "Lightricks/LTX-Video"
114
+ distilled_model_path = hf_hub_download(repo_id=LTX_REPO, filename=self.config["checkpoint_path"], local_dir=models_dir, local_dir_use_symlinks=False)
115
+ self.config["checkpoint_path"] = distilled_model_path
116
+ spatial_upscaler_path = hf_hub_download(repo_id=LTX_REPO, filename=self.config["spatial_upscaler_model_path"], local_dir=models_dir, local_dir_use_symlinks=False)
117
+ self.config["spatial_upscaler_model_path"] = spatial_upscaler_path
118
+ pipeline = create_ltx_video_pipeline(ckpt_path=self.config["checkpoint_path"], precision=self.config["precision"], text_encoder_model_name_or_path=self.config["text_encoder_model_name_or_path"], sampler=self.config["sampler"], device="cpu", enhance_prompt=False, prompt_enhancer_image_caption_model_name_or_path=self.config["prompt_enhancer_image_caption_model_name_or_path"], prompt_enhancer_llm_model_name_or_path=self.config["prompt_enhancer_llm_model_name_or_path"])
119
+ latent_upsampler = None
120
+ if self.config.get("spatial_upscaler_model_path"):
121
+ latent_upsampler = create_latent_upsampler(self.config["spatial_upscaler_model_path"], device="cpu")
 
 
 
 
 
 
 
 
 
122
  return pipeline, latent_upsampler
123
+
124
+ def _prepare_conditioning_tensor(self, filepath, height, width, padding_values):
125
+ tensor = load_image_to_tensor_with_resize_and_crop(filepath, height, width)
126
+ tensor = torch.nn.functional.pad(tensor, padding_values)
127
+ return tensor.to(self.device)
128
+
129
+ def generate(self, prompt, negative_prompt, mode="text-to-video",
130
+ start_image_filepath=None,
131
+ middle_image_filepath=None, middle_frame_number=None, middle_image_weight=1.0,
132
+ end_image_filepath=None, end_image_weight=1.0,
133
+ input_video_filepath=None, height=512, width=704, duration=2.0,
134
+ frames_to_use=9, seed=42, randomize_seed=True, guidance_scale=3.0,
 
 
 
 
 
 
 
 
135
  improve_texture=True, progress_callback=None):
136
+ if self.device == "cuda":
137
+ torch.cuda.empty_cache()
138
+ torch.cuda.reset_peak_memory_stats()
139
+ self._log_gpu_memory("Início da Geração")
140
+
141
+ if mode == "image-to-video" and not start_image_filepath:
142
+ raise ValueError("A imagem de início é obrigatória para o modo image-to-video")
143
+ if mode == "video-to-video" and not input_video_filepath:
144
+ raise ValueError("O vídeo de entrada é obrigatório para o modo video-to-video")
145
+
146
+ used_seed = random.randint(0, 2**32 - 1) if randomize_seed else int(seed)
147
+ seed_everething(used_seed)
148
+
149
+ FPS = 24.0
150
+ MAX_NUM_FRAMES = 257
151
+ target_frames_rounded = round(duration * FPS)
152
+ n_val = round((float(target_frames_rounded) - 1.0) / 8.0)
153
+ actual_num_frames = max(9, min(MAX_NUM_FRAMES, int(n_val * 8 + 1)))
154
 
155
+ height_padded = ((height - 1) // 32 + 1) * 32
156
+ width_padded = ((width - 1) // 32 + 1) * 32
157
+ padding_values = calculate_padding(height, width, height_padded, width_padded)
158
 
159
+ generator = torch.Generator(device=self.device).manual_seed(used_seed)
 
 
160
 
161
+ conditioning_items = []
162
+ if mode == "image-to-video":
163
+ start_tensor = self._prepare_conditioning_tensor(start_image_filepath, height, width, padding_values)
164
+ conditioning_items.append(ConditioningItem(start_tensor, 0, 1.0))
165
+ if middle_image_filepath and middle_frame_number is not None:
166
+ middle_tensor = self._prepare_conditioning_tensor(middle_image_filepath, height, width, padding_values)
167
+ safe_middle_frame = max(0, min(int(middle_frame_number), actual_num_frames - 1))
168
+ conditioning_items.append(ConditioningItem(middle_tensor, safe_middle_frame, float(middle_image_weight)))
169
+ if end_image_filepath:
170
+ end_tensor = self._prepare_conditioning_tensor(end_image_filepath, height, width, padding_values)
171
+ last_frame_index = actual_num_frames - 1
172
+ conditioning_items.append(ConditioningItem(end_tensor, last_frame_index, float(end_image_weight)))
173
+
174
+ call_kwargs = {
175
+ "prompt": prompt, "negative_prompt": negative_prompt, "height": height_padded, "width": width_padded,
176
+ "num_frames": actual_num_frames, "frame_rate": int(FPS), "generator": generator, "output_type": "pt",
177
+ "conditioning_items": conditioning_items if conditioning_items else None,
178
+ "media_items": None,
179
+ "decode_timestep": self.config["decode_timestep"], "decode_noise_scale": self.config["decode_noise_scale"],
180
+ "stochastic_sampling": self.config["stochastic_sampling"], "image_cond_noise_scale": 0.15,
181
+ "is_video": True, "vae_per_channel_normalize": True,
182
+ "mixed_precision": (self.config["precision"] == "mixed_precision"),
183
+ "offload_to_cpu": False, "enhance_prompt": False,
184
+ "skip_layer_strategy": SkipLayerStrategy.AttentionValues
185
+ }
186
+
187
+ if mode == "video-to-video":
188
+ call_kwargs["media_items"] = load_media_file(media_path=input_video_filepath, height=height, width=width, max_frames=int(frames_to_use), padding=padding_values).to(self.device)
189
+
190
+ result_tensor = None
191
+ if improve_texture:
192
+ if not self.latent_upsampler:
193
+ raise ValueError("Upscaler espacial não carregado.")
194
+ multi_scale_pipeline = LTXMultiScalePipeline(self.pipeline, self.latent_upsampler)
195
+ first_pass_args = self.config.get("first_pass", {}).copy()
196
+ first_pass_args["guidance_scale"] = float(guidance_scale)
197
+ second_pass_args = self.config.get("second_pass", {}).copy()
198
+ second_pass_args["guidance_scale"] = float(guidance_scale)
199
+ multi_scale_call_kwargs = call_kwargs.copy()
200
+ multi_scale_call_kwargs.update({"downscale_factor": self.config["downscale_factor"], "first_pass": first_pass_args, "second_pass": second_pass_args})
201
+ result_tensor = multi_scale_pipeline(**multi_scale_call_kwargs).images
202
+ log_tensor_info(result_tensor, "Resultado da Etapa 2 (Saída do Pipeline Multi-Scale)")
203
+ else:
204
+ single_pass_kwargs = call_kwargs.copy()
205
+ first_pass_config = self.config.get("first_pass", {})
206
+ single_pass_kwargs.update({
207
+ "guidance_scale": float(guidance_scale),
208
+ "stg_scale": first_pass_config.get("stg_scale"),
209
+ "rescaling_scale": first_pass_config.get("rescaling_scale"),
210
+ "skip_block_list": first_pass_config.get("skip_block_list"),
211
+ })
212
+
213
+ # --- <INÍCIO DA CORREÇÃO> ---
214
+ if mode == "video-to-video":
215
+ single_pass_kwargs["timesteps"] = [0.7] # CORRIGIDO: Passar como uma lista
216
+ print("[INFO] Modo video-to-video (etapa única): definindo timesteps (força) para [0.7]")
217
+ else:
218
+ single_pass_kwargs["timesteps"] = first_pass_config.get("timesteps")
219
+ # --- <FIM DA CORREÇÃO> ---
220
 
221
+ print("\n[INFO] Executando pipeline de etapa única...")
222
+ result_tensor = self.pipeline(**single_pass_kwargs).images
223
+
224
+ pad_left, pad_right, pad_top, pad_bottom = padding_values
225
+ slice_h_end = -pad_bottom if pad_bottom > 0 else None
226
+ slice_w_end = -pad_right if pad_right > 0 else None
227
+
228
+ result_tensor = result_tensor[:, :, :actual_num_frames, pad_top:slice_h_end, pad_left:slice_w_end]
229
+ log_tensor_info(result_tensor, "Tensor Final (Após Pós-processamento, Antes de Salvar)")
230
+
231
+ video_np = (result_tensor[0].permute(1, 2, 3, 0).cpu().float().numpy() * 255).astype(np.uint8)
232
+ temp_dir = tempfile.mkdtemp()
233
+ output_video_path = os.path.join(temp_dir, f"output_{used_seed}.mp4")
234
+
235
+ with imageio.get_writer(output_video_path, fps=call_kwargs["frame_rate"], codec='libx264', quality=8) as writer:
236
+ total_frames = len(video_np)
237
+ for i, frame in enumerate(video_np):
238
+ writer.append_data(frame)
239
+ if progress_callback:
240
+ progress_callback(i + 1, total_frames)
241
+
242
+ self._log_gpu_memory("Fim da Geração")
243
+ return output_video_path, used_seed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
244
 
245
+ print("Criando instância do VideoService. O carregamento do modelo começará agora...")
246
  video_generation_service = VideoService()