File size: 27,768 Bytes
4ac877f
 
5e7dd18
 
ac23084
 
 
 
a6e974e
ac23084
a6e974e
ac23084
 
 
1797675
ac23084
 
bd507dd
 
33de423
5e7dd18
 
ac23084
4ac877f
81e3e50
 
4ac877f
1797675
cb3f487
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b10e93
cb3f487
 
 
 
 
 
9b10e93
cb3f487
 
 
 
 
 
4ac877f
cb3f487
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac23084
 
 
5e7dd18
ac23084
 
5e7dd18
ac23084
5e7dd18
ac23084
5e7dd18
ac23084
 
eb62b92
ac23084
 
5e7dd18
ac23084
 
 
5e7dd18
ac23084
5e7dd18
 
ac23084
 
 
1797675
ac23084
bd507dd
 
 
 
 
 
ac23084
1797675
ac23084
 
1797675
 
 
5e7dd18
1797675
5e7dd18
 
1797675
 
 
5e7dd18
 
 
 
1797675
 
 
ac23084
 
5e7dd18
 
 
 
ac23084
5e7dd18
1797675
5e7dd18
bd507dd
9b10e93
33de423
1797675
5e7dd18
 
 
1797675
 
 
33de423
 
5e7dd18
33de423
1797675
 
 
5e7dd18
 
bd507dd
 
 
 
 
 
 
 
 
 
 
9b10e93
5e7dd18
 
bd507dd
5e7dd18
bd507dd
 
 
 
31d7902
5e7dd18
9b10e93
31d7902
 
5e7dd18
9b10e93
31d7902
 
5e7dd18
9b10e93
5e7dd18
31d7902
 
 
9b10e93
5e7dd18
 
31d7902
 
5e7dd18
31d7902
 
 
9b10e93
5e7dd18
 
31d7902
 
5e7dd18
31d7902
 
 
 
 
 
 
 
5e7dd18
 
31d7902
 
5e7dd18
 
bd507dd
ac23084
33de423
 
 
 
 
bda9780
33de423
 
 
5e7dd18
33de423
 
5e7dd18
 
 
ac23084
 
1797675
5e7dd18
ac23084
9b10e93
bd507dd
 
 
 
 
 
 
1797675
5e7dd18
bd507dd
9b10e93
bd507dd
 
 
 
 
 
 
1797675
5e7dd18
bd507dd
5e7dd18
bd507dd
 
 
 
 
 
 
 
 
 
5e7dd18
bd507dd
1797675
 
5e7dd18
1797675
5e7dd18
 
8ce4529
bd507dd
33de423
c825b23
5e7dd18
c825b23
33de423
 
5e7dd18
33de423
5e7dd18
33de423
 
 
 
9b10e93
33de423
 
 
 
 
9b10e93
33de423
 
5e7dd18
bda9780
33de423
 
 
5e7dd18
33de423
 
c825b23
5e7dd18
c825b23
 
 
5e7dd18
 
c825b23
 
 
5e7dd18
 
33de423
 
 
 
 
 
bda9780
1797675
5e7dd18
1797675
 
5e7dd18
 
 
1797675
4ac877f
bd507dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ac877f
5e7dd18
bd507dd
5e7dd18
 
1797675
9b10e93
1797675
 
 
 
 
 
 
 
9b10e93
1797675
9b10e93
1797675
 
 
5e7dd18
bd507dd
1797675
 
 
5e7dd18
bd507dd
1797675
 
bd507dd
1797675
 
 
 
 
 
 
 
 
 
 
5e7dd18
1797675
9b10e93
1797675
bd507dd
 
 
 
 
 
 
9b10e93
bd507dd
1797675
bd507dd
 
 
 
 
 
1797675
bd507dd
 
 
1797675
9b10e93
1797675
 
5e7dd18
bd507dd
 
 
 
 
 
5e7dd18
 
1797675
2e1e83b
bd507dd
 
5e7dd18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b10e93
 
 
 
 
5e7dd18
9b10e93
 
2e1e83b
5e7dd18
 
 
 
 
 
 
 
 
 
9b10e93
5e7dd18
9b10e93
5e7dd18
 
 
 
 
 
 
 
 
 
 
 
9b10e93
 
 
 
5e7dd18
9b10e93
 
1797675
4ac877f
9b10e93
 
5e7dd18
 
bd507dd
63cc2df
 
 
67bc380
63cc2df
67bc380
 
4ac877f
 
 
 
 
 
 
 
 
 
 
9b10e93
bd507dd
 
 
 
 
5e7dd18
 
bd507dd
5e7dd18
bd507dd
5e7dd18
bd507dd
5e7dd18
bd507dd
5e7dd18
 
 
 
 
bd507dd
2e1e83b
 
 
 
bd507dd
 
 
 
1797675
bd507dd
 
 
 
 
 
 
 
5e7dd18
 
31d7902
bd507dd
5e7dd18
 
 
ac23084
1797675
2e1e83b
9b10e93
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
# ltx_server.py — VideoService (beta 1.0)
# Sempre output_type="latent"; no final: VAE (bloco inteiro) → pixels → MP4.

# --- 1. IMPORTAÇÕES ---
import torch
import numpy as np
import random
import os
import shlex
import yaml
from typing import List, Dict
from pathlib import Path
import imageio
import tempfile
from huggingface_hub import hf_hub_download
import sys
import subprocess
import gc
import shutil
import contextlib
import time
import traceback

# Singletons do projeto para VAE e Encoder
from tools.video_encode_tool import video_encode_tool_singleton
from managers.vae_manager import vae_manager_singleton

# --- 2. GERENCIAMENTO DE DEPENDÊNCIAS E SETUP ---
def _query_gpu_processes_via_nvml(device_index: int) -> List[Dict]:
    try:
        import psutil
        import pynvml as nvml
        nvml.nvmlInit()
        handle = nvml.nvmlDeviceGetHandleByIndex(device_index)
        try:
            procs = nvml.nvmlDeviceGetComputeRunningProcesses_v3(handle)
        except Exception:
            procs = nvml.nvmlDeviceGetComputeRunningProcesses(handle)
        results = []
        for p in procs:
            pid = int(p.pid)
            used_mb = None
            try:
                if getattr(p, "usedGpuMemory", None) is not None and p.usedGpuMemory not in (0,):
                    used_mb = max(0, int(p.usedGpuMemory) // (1024 * 1024))
            except Exception:
                used_mb = None
            name = "unknown"
            user = "unknown"
            try:
                pr = psutil.Process(pid)
                name = pr.name()
                user = pr.username()
            except Exception:
                pass
            results.append({"pid": pid, "name": name, "user": user, "used_mb": used_mb})
        nvml.nvmlShutdown()
        return results
    except Exception:
        return []

def _query_gpu_processes_via_nvidiasmi(device_index: int) -> List[Dict]:
    cmd = f"nvidia-smi -i {device_index} --query-compute-apps=pid,process_name,used_memory --format=csv,noheader,nounits"
    try:
        out = subprocess.check_output(shlex.split(cmd), stderr=subprocess.STDOUT, text=True, timeout=2.0)
    except Exception:
        return []
    results = []
    for line in out.strip().splitlines():
        parts = [p.strip() for p in line.split(",")]
        if len(parts) >= 3:
            try:
                pid = int(parts[0]); name = parts[1]; used_mb = int(parts[2])
                user = "unknown"
                try:
                    import psutil
                    pr = psutil.Process(pid)
                    user = pr.username()
                except Exception:
                    pass
                results.append({"pid": pid, "name": name, "user": user, "used_mb": used_mb})
            except Exception:
                continue
    return results

def _gpu_process_table(processes: List[Dict], current_pid: int) -> str:
    if not processes:
        return "  - Processos ativos: (nenhum)\n"
    processes = sorted(processes, key=lambda x: (x.get("used_mb") or 0), reverse=True)
    lines = ["  - Processos ativos (PID | USER | NAME | VRAM MB):"]
    for p in processes:
        star = "*" if p["pid"] == current_pid else " "
        used_str = str(p["used_mb"]) if p.get("used_mb") is not None else "N/A"
        lines.append(f"    {star} {p['pid']} | {p['user']} | {p['name']} | {used_str}")
    return "\n".join(lines) + "\n"

def run_setup():
    setup_script_path = "setup.py"
    if not os.path.exists(setup_script_path):
        print("[DEBUG] 'setup.py' não encontrado. Pulando clonagem de dependências.")
        return
    try:
        print("[DEBUG] Executando setup.py para dependências...")
        subprocess.run([sys.executable, setup_script_path], check=True)
        print("[DEBUG] Setup concluído com sucesso.")
    except subprocess.CalledProcessError as e:
        print(f"[DEBUG] ERRO no setup.py (code {e.returncode}). Abortando.")
        sys.exit(1)

DEPS_DIR = Path("/data")
LTX_VIDEO_REPO_DIR = DEPS_DIR / "LTX-Video"
if not LTX_VIDEO_REPO_DIR.exists():
    print(f"[DEBUG] Repositório não encontrado em {LTX_VIDEO_REPO_DIR}. Rodando setup...")
    run_setup()

def add_deps_to_path():
    repo_path = str(LTX_VIDEO_REPO_DIR.resolve())
    if str(LTX_VIDEO_REPO_DIR.resolve()) not in sys.path:
        sys.path.insert(0, repo_path)
        print(f"[DEBUG] Repo adicionado ao sys.path: {repo_path}")

add_deps_to_path()

# --- 3. IMPORTAÇÕES ESPECÍFICAS DO MODELO ---
from inference import (
    create_ltx_video_pipeline,
    create_latent_upsampler,
    load_image_to_tensor_with_resize_and_crop,
    seed_everething,
    calculate_padding,
    load_media_file,
)
from ltx_video.pipelines.pipeline_ltx_video import ConditioningItem, LTXMultiScalePipeline
from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy

# --- 4. FUNÇÕES HELPER DE LOG ---
def log_tensor_info(tensor, name="Tensor"):
    if not isinstance(tensor, torch.Tensor):
        print(f"\n[INFO] '{name}' não é tensor.")
        return
    print(f"\n--- Tensor: {name} ---")
    print(f"  - Shape: {tuple(tensor.shape)}")
    print(f"  - Dtype: {tensor.dtype}")
    print(f"  - Device: {tensor.device}")
    if tensor.numel() > 0:
        try:
            print(f"  - Min: {tensor.min().item():.4f}  Max: {tensor.max().item():.4f}  Mean: {tensor.mean().item():.4f}")
        except Exception:
            pass
    print("------------------------------------------\n")

# --- 5. CLASSE PRINCIPAL DO SERVIÇO ---
class VideoService:
    def __init__(self):
        t0 = time.perf_counter()
        print("[DEBUG] Inicializando VideoService...")
        self.debug = os.getenv("LTXV_DEBUG", "1") == "1"
        self.frame_log_every = int(os.getenv("LTXV_FRAME_LOG_EVERY", "8"))
        self.config = self._load_config()
        print(f"[DEBUG] Config carregada (precision={self.config.get('precision')}, sampler={self.config.get('sampler')})")
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        print(f"[DEBUG] Device selecionado: {self.device}")
        self.last_memory_reserved_mb = 0.0
        self._tmp_dirs = set(); self._tmp_files = set(); self._last_outputs = []

        self.pipeline, self.latent_upsampler = self._load_models()
        print(f"[DEBUG] Pipeline e Upsampler carregados. Upsampler ativo? {bool(self.latent_upsampler)}")

        print(f"[DEBUG] Movendo modelos para {self.device}...")
        self.pipeline.to(self.device)
        if self.latent_upsampler:
            self.latent_upsampler.to(self.device)

        self._apply_precision_policy()
        print(f"[DEBUG] runtime_autocast_dtype = {getattr(self, 'runtime_autocast_dtype', None)}")

        if self.device == "cuda":
            torch.cuda.empty_cache()
            self._log_gpu_memory("Após carregar modelos")

        print(f"[DEBUG] VideoService pronto. boot_time={time.perf_counter()-t0:.3f}s")

    def _log_gpu_memory(self, stage_name: str):
        if self.device != "cuda":
            return
        device_index = torch.cuda.current_device() if torch.cuda.is_available() else 0
        current_reserved_b = torch.cuda.memory_reserved(device_index)
        current_reserved_mb = current_reserved_b / (1024 ** 2)
        total_memory_b = torch.cuda.get_device_properties(device_index).total_memory
        total_memory_mb = total_memory_b / (1024 ** 2)
        peak_reserved_mb = torch.cuda.max_memory_reserved(device_index) / (1024 ** 2)
        delta_mb = current_reserved_mb - getattr(self, "last_memory_reserved_mb", 0.0)
        processes = _query_gpu_processes_via_nvml(device_index) or _query_gpu_processes_via_nvidiasmi(device_index)
        print(f"\n--- [LOG GPU] {stage_name} (cuda:{device_index}) ---")
        print(f"  - Reservado: {current_reserved_mb:.2f} MB / {total_memory_mb:.2f} MB  (Δ={delta_mb:+.2f} MB)")
        if peak_reserved_mb > getattr(self, "last_memory_reserved_mb", 0.0):
            print(f"  - Pico reservado (nesta fase): {peak_reserved_mb:.2f} MB")
        print(_gpu_process_table(processes, os.getpid()), end="")
        print("--------------------------------------------------\n")
        self.last_memory_reserved_mb = current_reserved_mb

    def _register_tmp_dir(self, d: str):
        if d and os.path.isdir(d):
            self._tmp_dirs.add(d); print(f"[DEBUG] Registrado tmp dir: {d}")

    def _register_tmp_file(self, f: str):
        if f and os.path.exists(f):
            self._tmp_files.add(f); print(f"[DEBUG] Registrado tmp file: {f}")

    def finalize(self, keep_paths=None, extra_paths=None, clear_gpu=True):
        print("[DEBUG] Finalize: iniciando limpeza...")
        keep = set(keep_paths or []); extras = set(extra_paths or [])
        removed_files = 0
        for f in list(self._tmp_files | extras):
            try:
                if f not in keep and os.path.isfile(f):
                    os.remove(f); removed_files += 1; print(f"[DEBUG] Removido arquivo tmp: {f}")
            except Exception as e:
                print(f"[DEBUG] Falha removendo arquivo {f}: {e}")
            finally:
                self._tmp_files.discard(f)
        removed_dirs = 0
        for d in list(self._tmp_dirs):
            try:
                if d not in keep and os.path.isdir(d):
                    shutil.rmtree(d, ignore_errors=True); removed_dirs += 1; print(f"[DEBUG] Removido diretório tmp: {d}")
            except Exception as e:
                print(f"[DEBUG] Falha removendo diretório {d}: {e}")
            finally:
                self._tmp_dirs.discard(d)
        print(f"[DEBUG] Finalize: arquivos removidos={removed_files}, dirs removidos={removed_dirs}")
        gc.collect()
        try:
            if clear_gpu and torch.cuda.is_available():
                torch.cuda.empty_cache()
                try:
                    torch.cuda.ipc_collect()
                except Exception:
                    pass
        except Exception as e:
            print(f"[DEBUG] Finalize: limpeza GPU falhou: {e}")
        try:
            self._log_gpu_memory("Após finalize")
        except Exception as e:
            print(f"[DEBUG] Log GPU pós-finalize falhou: {e}")

    def _load_config(self):
        base = LTX_VIDEO_REPO_DIR / "configs"
        candidates = [
            base / "ltxv-13b-0.9.8-dev-fp8.yaml",
            base / "ltxv-13b-0.9.8-distilled-fp8.yaml",
            base / "ltxv-13b-0.9.8-dev-fp8.yaml.txt",
            base / "ltxv-13b-0.9.8-distilled.yaml",
        ]
        for cfg in candidates:
            if cfg.exists():
                print(f"[DEBUG] Config selecionada: {cfg}")
                with open(cfg, "r") as file:
                    return yaml.safe_load(file)
        cfg = base / "ltxv-13b-0.9.8-distilled.yaml"
        print(f"[DEBUG] Config fallback: {cfg}")
        with open(cfg, "r") as file:
            return yaml.safe_load(file)

    def _load_models(self):
        t0 = time.perf_counter()
        LTX_REPO = "Lightricks/LTX-Video"
        print("[DEBUG] Baixando checkpoint principal...")
        distilled_model_path = hf_hub_download(
            repo_id=LTX_REPO,
            filename=self.config["checkpoint_path"],
            local_dir=os.getenv("HF_HOME"),
            cache_dir=os.getenv("HF_HOME_CACHE"),
            token=os.getenv("HF_TOKEN"),
        )
        self.config["checkpoint_path"] = distilled_model_path
        print(f"[DEBUG] Checkpoint em: {distilled_model_path}")

        print("[DEBUG] Baixando upscaler espacial...")
        spatial_upscaler_path = hf_hub_download(
            repo_id=LTX_REPO,
            filename=self.config["spatial_upscaler_model_path"],
            local_dir=os.getenv("HF_HOME"),
            cache_dir=os.getenv("HF_HOME_CACHE"),
            token=os.getenv("HF_TOKEN"),
        )
        self.config["spatial_upscaler_model_path"] = spatial_upscaler_path
        print(f"[DEBUG] Upscaler em: {spatial_upscaler_path}")

        print("[DEBUG] Construindo pipeline...")
        pipeline = create_ltx_video_pipeline(
            ckpt_path=self.config["checkpoint_path"],
            precision=self.config["precision"],
            text_encoder_model_name_or_path=self.config["text_encoder_model_name_or_path"],
            sampler=self.config["sampler"],
            device="cpu",
            enhance_prompt=False,
            prompt_enhancer_image_caption_model_name_or_path=self.config["prompt_enhancer_image_caption_model_name_or_path"],
            prompt_enhancer_llm_model_name_or_path=self.config["prompt_enhancer_llm_model_name_or_path"],
        )
        print("[DEBUG] Pipeline pronto.")

        latent_upsampler = None
        if self.config.get("spatial_upscaler_model_path"):
            print("[DEBUG] Construindo latent_upsampler...")
            latent_upsampler = create_latent_upsampler(self.config["spatial_upscaler_model_path"], device="cpu")
            print("[DEBUG] Upsampler pronto.")
        print(f"[DEBUG] _load_models() tempo total={time.perf_counter()-t0:.3f}s")
        return pipeline, latent_upsampler

    def _promote_fp8_weights_to_bf16(self, module):
        if not isinstance(module, torch.nn.Module):
            print("[DEBUG] Promoção FP8→BF16 ignorada: alvo não é nn.Module.")
            return
        f8 = getattr(torch, "float8_e4m3fn", None)
        if f8 is None:
            print("[DEBUG] torch.float8_e4m3fn indisponível.")
            return
        p_cnt = b_cnt = 0
        for _, p in module.named_parameters(recurse=True):
            try:
                if p.dtype == f8:
                    with torch.no_grad():
                        p.data = p.data.to(torch.bfloat16); p_cnt += 1
            except Exception:
                pass
        for _, b in module.named_buffers(recurse=True):
            try:
                if hasattr(b, "dtype") and b.dtype == f8:
                    b.data = b.data.to(torch.bfloat16); b_cnt += 1
            except Exception:
                pass
        print(f"[DEBUG] FP8→BF16: params_promoted={p_cnt}, buffers_promoted={b_cnt}")

    def _apply_precision_policy(self):
        prec = str(self.config.get("precision", "")).lower()
        self.runtime_autocast_dtype = torch.float32
        print(f"[DEBUG] Aplicando política de precisão: {prec}")
        if prec == "float8_e4m3fn":
            self.runtime_autocast_dtype = torch.bfloat16
            force_promote = os.getenv("LTXV_FORCE_BF16_ON_FP8", "0") == "1"
            print(f"[DEBUG] FP8 detectado. force_promote={force_promote}")
            if force_promote and hasattr(torch, "float8_e4m3fn"):
                try:
                    self._promote_fp8_weights_to_bf16(self.pipeline)
                except Exception as e:
                    print(f"[DEBUG] Promoção FP8→BF16 na pipeline falhou: {e}")
                try:
                    if self.latent_upsampler:
                        self._promote_fp8_weights_to_bf16(self.latent_upsampler)
                except Exception as e:
                    print(f"[DEBUG] Promoção FP8→BF16 no upsampler falhou: {e}")
        elif prec == "bfloat16":
            self.runtime_autocast_dtype = torch.bfloat16
        elif prec == "mixed_precision":
            self.runtime_autocast_dtype = torch.float16
        else:
            self.runtime_autocast_dtype = torch.float32

    def _prepare_conditioning_tensor(self, filepath, height, width, padding_values):
        print(f"[DEBUG] Carregando condicionamento: {filepath}")
        tensor = load_image_to_tensor_with_resize_and_crop(filepath, height, width)
        tensor = torch.nn.functional.pad(tensor, padding_values)
        out = tensor.to(self.device, dtype=self.runtime_autocast_dtype) if self.device == "cuda" else tensor.to(self.device)
        print(f"[DEBUG] Cond shape={tuple(out.shape)} dtype={out.dtype} device={out.device}")
        return out

    # --- 6. GERAÇÃO ---
    def generate(
        self,
        prompt,
        negative_prompt,
        mode="text-to-video",
        start_image_filepath=None,
        middle_image_filepath=None,
        middle_frame_number=None,
        middle_image_weight=1.0,
        end_image_filepath=None,
        end_image_weight=1.0,
        input_video_filepath=None,
        height=512,
        width=704,
        duration=2.0,
        frames_to_use=9,
        seed=42,
        randomize_seed=True,
        guidance_scale=3.0,
        improve_texture=True,
        progress_callback=None,
        # Sempre latent → VAE → MP4 (simples)
        external_decode=True,
    ):
        t_all = time.perf_counter()
        print(f"[DEBUG] generate() begin mode={mode} external_decode={external_decode} improve_texture={improve_texture}")
        if self.device == "cuda":
            torch.cuda.empty_cache(); torch.cuda.reset_peak_memory_stats()
        self._log_gpu_memory("Início da Geração")

        if mode == "image-to-video" and not start_image_filepath:
            raise ValueError("A imagem de início é obrigatória para o modo image-to-video")
        if mode == "video-to-video" and not input_video_filepath:
            raise ValueError("O vídeo de entrada é obrigatório para o modo video-to-video")

        used_seed = random.randint(0, 2**32 - 1) if randomize_seed else int(seed)
        seed_everething(used_seed); print(f"[DEBUG] Seed usado: {used_seed}")

        FPS = 24.0; MAX_NUM_FRAMES = 257
        target_frames_rounded = round(duration * FPS)
        n_val = round((float(target_frames_rounded) - 1.0) / 8.0)
        actual_num_frames = max(9, min(MAX_NUM_FRAMES, int(n_val * 8 + 1)))
        print(f"[DEBUG] Frames alvo: {actual_num_frames} (dur={duration}s @ {FPS}fps)")

        height_padded = ((height - 1) // 32 + 1) * 32
        width_padded = ((width - 1) // 32 + 1) * 32
        padding_values = calculate_padding(height, width, height_padded, width_padded)
        print(f"[DEBUG] Dimensões: ({height},{width}) -> pad ({height_padded},{width_padded}); padding={padding_values}")

        generator = torch.Generator(device=self.device).manual_seed(used_seed)
        conditioning_items = []

        if mode == "image-to-video":
            start_tensor = self._prepare_conditioning_tensor(start_image_filepath, height, width, padding_values)
            conditioning_items.append(ConditioningItem(start_tensor, 0, 1.0))
            if middle_image_filepath and middle_frame_number is not None:
                middle_tensor = self._prepare_conditioning_tensor(middle_image_filepath, height, width, padding_values)
                safe_middle_frame = max(0, min(int(middle_frame_number), actual_num_frames - 1))
                conditioning_items.append(ConditioningItem(middle_tensor, safe_middle_frame, float(middle_image_weight)))
            if end_image_filepath:
                end_tensor = self._prepare_conditioning_tensor(end_image_filepath, height, width, padding_values)
                last_frame_index = actual_num_frames - 1
                conditioning_items.append(ConditioningItem(end_tensor, last_frame_index, float(end_image_weight)))
            print(f"[DEBUG] Conditioning items: {len(conditioning_items)}")

        # Sempre pedimos latentes (simples)
        call_kwargs = {
            "prompt": prompt,
            "negative_prompt": negative_prompt,
            "height": height_padded,
            "width": width_padded,
            "num_frames": actual_num_frames,
            "frame_rate": int(FPS),
            "generator": generator,
            "output_type": "latent",
            "conditioning_items": conditioning_items if conditioning_items else None,
            "media_items": None,
            "decode_timestep": self.config["decode_timestep"],
            "decode_noise_scale": self.config["decode_noise_scale"],
            "stochastic_sampling": self.config["stochastic_sampling"],
            "image_cond_noise_scale": 0.15,
            "is_video": True,
            "vae_per_channel_normalize": True,
            "mixed_precision": (self.config["precision"] == "mixed_precision"),
            "offload_to_cpu": False,
            "enhance_prompt": False,
            "skip_layer_strategy": SkipLayerStrategy.AttentionValues,
        }
        print(f"[DEBUG] output_type={call_kwargs['output_type']} skip_layer_strategy={call_kwargs['skip_layer_strategy']}")

        if mode == "video-to-video":
            media = load_media_file(
                media_path=input_video_filepath,
                height=height,
                width=width,
                max_frames=int(frames_to_use),
                padding=padding_values,
            ).to(self.device)
            call_kwargs["media_items"] = media
            print(f"[DEBUG] media_items shape={tuple(media.shape)}")

        latents = None
        multi_scale_pipeline = None

        try:
            if improve_texture:
                if not self.latent_upsampler:
                    raise ValueError("Upscaler espacial não carregado.")
                print("[DEBUG] Multi-escala: construindo pipeline...")
                multi_scale_pipeline = LTXMultiScalePipeline(self.pipeline, self.latent_upsampler)
                first_pass_args = self.config.get("first_pass", {}).copy()
                first_pass_args["guidance_scale"] = float(guidance_scale)
                second_pass_args = self.config.get("second_pass", {}).copy()
                second_pass_args["guidance_scale"] = float(guidance_scale)

                multi_scale_call_kwargs = call_kwargs.copy()
                multi_scale_call_kwargs.update(
                    {
                        "downscale_factor": self.config["downscale_factor"],
                        "first_pass": first_pass_args,
                        "second_pass": second_pass_args,
                    }
                )
                print("[DEBUG] Chamando multi_scale_pipeline...")
                t_ms = time.perf_counter()
                ctx = torch.autocast(device_type="cuda", dtype=self.runtime_autocast_dtype) if self.device == "cuda" else contextlib.nullcontext()
                with ctx:
                    result = multi_scale_pipeline(**multi_scale_call_kwargs)
                print(f"[DEBUG] multi_scale_pipeline tempo={time.perf_counter()-t_ms:.3f}s")

                # Captura latentes
                if hasattr(result, "latents"):
                    latents = result.latents
                elif hasattr(result, "images") and isinstance(result.images, torch.Tensor):
                    latents = result.images
                else:
                    latents = result
                print(f"[DEBUG] Latentes (multi-escala): shape={tuple(latents.shape)}")
            else:
                single_pass_kwargs = call_kwargs.copy()
                first_pass_config = self.config.get("first_pass", {})
                single_pass_kwargs.update(
                    {
                        "guidance_scale": float(guidance_scale),
                        "stg_scale": first_pass_config.get("stg_scale"),
                        "rescaling_scale": first_pass_config.get("rescaling_scale"),
                        "skip_block_list": first_pass_config.get("skip_block_list"),
                    }
                )
                schedule = first_pass_config.get("timesteps") or first_pass_config.get("guidance_timesteps")
                if mode == "video-to-video":
                    schedule = [0.7]; print("[INFO] Modo video-to-video (etapa única): timesteps=[0.7]")
                if isinstance(schedule, (list, tuple)) and len(schedule) > 0:
                    single_pass_kwargs["timesteps"] = schedule
                    single_pass_kwargs["guidance_timesteps"] = schedule
                print(f"[DEBUG] Single-pass: timesteps_len={len(schedule) if schedule else 0}")

                print("\n[INFO] Executando pipeline de etapa única...")
                t_sp = time.perf_counter()
                ctx = torch.autocast(device_type="cuda", dtype=self.runtime_autocast_dtype) if self.device == "cuda" else contextlib.nullcontext()
                with ctx:
                    result = self.pipeline(**single_pass_kwargs)
                print(f"[DEBUG] single-pass tempo={time.perf_counter()-t_sp:.3f}s")

                if hasattr(result, "latents"):
                    latents = result.latents
                elif hasattr(result, "images") and isinstance(result.images, torch.Tensor):
                    latents = result.images
                else:
                    latents = result
                print(f"[DEBUG] Latentes (single-pass): shape={tuple(latents.shape)}")

            # Staging e escrita MP4 (simples: VAE → pixels → MP4)
            temp_dir = tempfile.mkdtemp(prefix="ltxv_"); self._register_tmp_dir(temp_dir)
            results_dir = "/app/output"; os.makedirs(results_dir, exist_ok=True)
            output_video_path = os.path.join(temp_dir, f"output_{used_seed}.mp4")
            final_output_path = None

            pixel_tensor = vae_manager_singleton.decode(
                latents.to(self.device, non_blocking=True),
                decode_timestep=float(self.config.get("decode_timestep", 0.05))
            )
            


            print("[DEBUG] Decodificando bloco de latentes com VAE → tensor de pixels...")
            # Se desejar “desocupar” a GPU antes do decode, pode-se mover p/ CPU e limpar:
            # latents_cpu = latents.detach().to("cpu", non_blocking=True); torch.cuda.empty_cache(); torch.cuda.ipc_collect(); latents = latents_cpu.to(self.device)
            pixel_tensor = vae_manager_singleton.decode(latents.to(self.device, non_blocking=True))
            log_tensor_info(pixel_tensor, "Pixel tensor (VAE saída)")

            print("[DEBUG] Codificando MP4 a partir do tensor de pixels (bloco inteiro)...")
            video_encode_tool_singleton.save_video_from_tensor(
                pixel_tensor,
                output_video_path,
                fps=call_kwargs["frame_rate"]
            )

            candidate_final = os.path.join(results_dir, f"output_{used_seed}.mp4")
            try:
                shutil.move(output_video_path, candidate_final)
                final_output_path = candidate_final
                print(f"[DEBUG] MP4 movido para {final_output_path}")
            except Exception as e:
                final_output_path = output_video_path
                print(f"[DEBUG] Falha no move; usando tmp como final: {e}")

            self._register_tmp_file(output_video_path)
            self._log_gpu_memory("Fim da Geração")
            print(f"[DEBUG] generate() fim ok. total_time={time.perf_counter()-t_all:.3f}s")
            return final_output_path, used_seed

        except Exception as e:
            print("[DEBUG] EXCEÇÃO NA GERAÇÃO:")
            print("".join(traceback.format_exception(type(e), e, e.__traceback__)))
            raise
        finally:
            try:
                del latents
            except Exception:
                pass
            try:
                del multi_scale_pipeline
            except Exception:
                pass

            gc.collect()
            try:
                if self.device == "cuda":
                    torch.cuda.empty_cache()
                    try:
                        torch.cuda.ipc_collect()
                    except Exception:
                        pass
            except Exception as e:
                print(f"[DEBUG] Limpeza GPU no finally falhou: {e}")

            try:
                self.finalize(keep_paths=[])
            except Exception as e:
                print(f"[DEBUG] finalize() no finally falhou: {e}")

print("Criando instância do VideoService. O carregamento do modelo começará agora...")
video_generation_service = VideoService()