Spaces:
Paused
Paused
File size: 27,768 Bytes
4ac877f 5e7dd18 ac23084 a6e974e ac23084 a6e974e ac23084 1797675 ac23084 bd507dd 33de423 5e7dd18 ac23084 4ac877f 81e3e50 4ac877f 1797675 cb3f487 9b10e93 cb3f487 9b10e93 cb3f487 4ac877f cb3f487 ac23084 5e7dd18 ac23084 5e7dd18 ac23084 5e7dd18 ac23084 5e7dd18 ac23084 eb62b92 ac23084 5e7dd18 ac23084 5e7dd18 ac23084 5e7dd18 ac23084 1797675 ac23084 bd507dd ac23084 1797675 ac23084 1797675 5e7dd18 1797675 5e7dd18 1797675 5e7dd18 1797675 ac23084 5e7dd18 ac23084 5e7dd18 1797675 5e7dd18 bd507dd 9b10e93 33de423 1797675 5e7dd18 1797675 33de423 5e7dd18 33de423 1797675 5e7dd18 bd507dd 9b10e93 5e7dd18 bd507dd 5e7dd18 bd507dd 31d7902 5e7dd18 9b10e93 31d7902 5e7dd18 9b10e93 31d7902 5e7dd18 9b10e93 5e7dd18 31d7902 9b10e93 5e7dd18 31d7902 5e7dd18 31d7902 9b10e93 5e7dd18 31d7902 5e7dd18 31d7902 5e7dd18 31d7902 5e7dd18 bd507dd ac23084 33de423 bda9780 33de423 5e7dd18 33de423 5e7dd18 ac23084 1797675 5e7dd18 ac23084 9b10e93 bd507dd 1797675 5e7dd18 bd507dd 9b10e93 bd507dd 1797675 5e7dd18 bd507dd 5e7dd18 bd507dd 5e7dd18 bd507dd 1797675 5e7dd18 1797675 5e7dd18 8ce4529 bd507dd 33de423 c825b23 5e7dd18 c825b23 33de423 5e7dd18 33de423 5e7dd18 33de423 9b10e93 33de423 9b10e93 33de423 5e7dd18 bda9780 33de423 5e7dd18 33de423 c825b23 5e7dd18 c825b23 5e7dd18 c825b23 5e7dd18 33de423 bda9780 1797675 5e7dd18 1797675 5e7dd18 1797675 4ac877f bd507dd 4ac877f 5e7dd18 bd507dd 5e7dd18 1797675 9b10e93 1797675 9b10e93 1797675 9b10e93 1797675 5e7dd18 bd507dd 1797675 5e7dd18 bd507dd 1797675 bd507dd 1797675 5e7dd18 1797675 9b10e93 1797675 bd507dd 9b10e93 bd507dd 1797675 bd507dd 1797675 bd507dd 1797675 9b10e93 1797675 5e7dd18 bd507dd 5e7dd18 1797675 2e1e83b bd507dd 5e7dd18 9b10e93 5e7dd18 9b10e93 2e1e83b 5e7dd18 9b10e93 5e7dd18 9b10e93 5e7dd18 9b10e93 5e7dd18 9b10e93 1797675 4ac877f 9b10e93 5e7dd18 bd507dd 63cc2df 67bc380 63cc2df 67bc380 4ac877f 9b10e93 bd507dd 5e7dd18 bd507dd 5e7dd18 bd507dd 5e7dd18 bd507dd 5e7dd18 bd507dd 5e7dd18 bd507dd 2e1e83b bd507dd 1797675 bd507dd 5e7dd18 31d7902 bd507dd 5e7dd18 ac23084 1797675 2e1e83b 9b10e93 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 |
# ltx_server.py — VideoService (beta 1.0)
# Sempre output_type="latent"; no final: VAE (bloco inteiro) → pixels → MP4.
# --- 1. IMPORTAÇÕES ---
import torch
import numpy as np
import random
import os
import shlex
import yaml
from typing import List, Dict
from pathlib import Path
import imageio
import tempfile
from huggingface_hub import hf_hub_download
import sys
import subprocess
import gc
import shutil
import contextlib
import time
import traceback
# Singletons do projeto para VAE e Encoder
from tools.video_encode_tool import video_encode_tool_singleton
from managers.vae_manager import vae_manager_singleton
# --- 2. GERENCIAMENTO DE DEPENDÊNCIAS E SETUP ---
def _query_gpu_processes_via_nvml(device_index: int) -> List[Dict]:
try:
import psutil
import pynvml as nvml
nvml.nvmlInit()
handle = nvml.nvmlDeviceGetHandleByIndex(device_index)
try:
procs = nvml.nvmlDeviceGetComputeRunningProcesses_v3(handle)
except Exception:
procs = nvml.nvmlDeviceGetComputeRunningProcesses(handle)
results = []
for p in procs:
pid = int(p.pid)
used_mb = None
try:
if getattr(p, "usedGpuMemory", None) is not None and p.usedGpuMemory not in (0,):
used_mb = max(0, int(p.usedGpuMemory) // (1024 * 1024))
except Exception:
used_mb = None
name = "unknown"
user = "unknown"
try:
pr = psutil.Process(pid)
name = pr.name()
user = pr.username()
except Exception:
pass
results.append({"pid": pid, "name": name, "user": user, "used_mb": used_mb})
nvml.nvmlShutdown()
return results
except Exception:
return []
def _query_gpu_processes_via_nvidiasmi(device_index: int) -> List[Dict]:
cmd = f"nvidia-smi -i {device_index} --query-compute-apps=pid,process_name,used_memory --format=csv,noheader,nounits"
try:
out = subprocess.check_output(shlex.split(cmd), stderr=subprocess.STDOUT, text=True, timeout=2.0)
except Exception:
return []
results = []
for line in out.strip().splitlines():
parts = [p.strip() for p in line.split(",")]
if len(parts) >= 3:
try:
pid = int(parts[0]); name = parts[1]; used_mb = int(parts[2])
user = "unknown"
try:
import psutil
pr = psutil.Process(pid)
user = pr.username()
except Exception:
pass
results.append({"pid": pid, "name": name, "user": user, "used_mb": used_mb})
except Exception:
continue
return results
def _gpu_process_table(processes: List[Dict], current_pid: int) -> str:
if not processes:
return " - Processos ativos: (nenhum)\n"
processes = sorted(processes, key=lambda x: (x.get("used_mb") or 0), reverse=True)
lines = [" - Processos ativos (PID | USER | NAME | VRAM MB):"]
for p in processes:
star = "*" if p["pid"] == current_pid else " "
used_str = str(p["used_mb"]) if p.get("used_mb") is not None else "N/A"
lines.append(f" {star} {p['pid']} | {p['user']} | {p['name']} | {used_str}")
return "\n".join(lines) + "\n"
def run_setup():
setup_script_path = "setup.py"
if not os.path.exists(setup_script_path):
print("[DEBUG] 'setup.py' não encontrado. Pulando clonagem de dependências.")
return
try:
print("[DEBUG] Executando setup.py para dependências...")
subprocess.run([sys.executable, setup_script_path], check=True)
print("[DEBUG] Setup concluído com sucesso.")
except subprocess.CalledProcessError as e:
print(f"[DEBUG] ERRO no setup.py (code {e.returncode}). Abortando.")
sys.exit(1)
DEPS_DIR = Path("/data")
LTX_VIDEO_REPO_DIR = DEPS_DIR / "LTX-Video"
if not LTX_VIDEO_REPO_DIR.exists():
print(f"[DEBUG] Repositório não encontrado em {LTX_VIDEO_REPO_DIR}. Rodando setup...")
run_setup()
def add_deps_to_path():
repo_path = str(LTX_VIDEO_REPO_DIR.resolve())
if str(LTX_VIDEO_REPO_DIR.resolve()) not in sys.path:
sys.path.insert(0, repo_path)
print(f"[DEBUG] Repo adicionado ao sys.path: {repo_path}")
add_deps_to_path()
# --- 3. IMPORTAÇÕES ESPECÍFICAS DO MODELO ---
from inference import (
create_ltx_video_pipeline,
create_latent_upsampler,
load_image_to_tensor_with_resize_and_crop,
seed_everething,
calculate_padding,
load_media_file,
)
from ltx_video.pipelines.pipeline_ltx_video import ConditioningItem, LTXMultiScalePipeline
from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy
# --- 4. FUNÇÕES HELPER DE LOG ---
def log_tensor_info(tensor, name="Tensor"):
if not isinstance(tensor, torch.Tensor):
print(f"\n[INFO] '{name}' não é tensor.")
return
print(f"\n--- Tensor: {name} ---")
print(f" - Shape: {tuple(tensor.shape)}")
print(f" - Dtype: {tensor.dtype}")
print(f" - Device: {tensor.device}")
if tensor.numel() > 0:
try:
print(f" - Min: {tensor.min().item():.4f} Max: {tensor.max().item():.4f} Mean: {tensor.mean().item():.4f}")
except Exception:
pass
print("------------------------------------------\n")
# --- 5. CLASSE PRINCIPAL DO SERVIÇO ---
class VideoService:
def __init__(self):
t0 = time.perf_counter()
print("[DEBUG] Inicializando VideoService...")
self.debug = os.getenv("LTXV_DEBUG", "1") == "1"
self.frame_log_every = int(os.getenv("LTXV_FRAME_LOG_EVERY", "8"))
self.config = self._load_config()
print(f"[DEBUG] Config carregada (precision={self.config.get('precision')}, sampler={self.config.get('sampler')})")
self.device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"[DEBUG] Device selecionado: {self.device}")
self.last_memory_reserved_mb = 0.0
self._tmp_dirs = set(); self._tmp_files = set(); self._last_outputs = []
self.pipeline, self.latent_upsampler = self._load_models()
print(f"[DEBUG] Pipeline e Upsampler carregados. Upsampler ativo? {bool(self.latent_upsampler)}")
print(f"[DEBUG] Movendo modelos para {self.device}...")
self.pipeline.to(self.device)
if self.latent_upsampler:
self.latent_upsampler.to(self.device)
self._apply_precision_policy()
print(f"[DEBUG] runtime_autocast_dtype = {getattr(self, 'runtime_autocast_dtype', None)}")
if self.device == "cuda":
torch.cuda.empty_cache()
self._log_gpu_memory("Após carregar modelos")
print(f"[DEBUG] VideoService pronto. boot_time={time.perf_counter()-t0:.3f}s")
def _log_gpu_memory(self, stage_name: str):
if self.device != "cuda":
return
device_index = torch.cuda.current_device() if torch.cuda.is_available() else 0
current_reserved_b = torch.cuda.memory_reserved(device_index)
current_reserved_mb = current_reserved_b / (1024 ** 2)
total_memory_b = torch.cuda.get_device_properties(device_index).total_memory
total_memory_mb = total_memory_b / (1024 ** 2)
peak_reserved_mb = torch.cuda.max_memory_reserved(device_index) / (1024 ** 2)
delta_mb = current_reserved_mb - getattr(self, "last_memory_reserved_mb", 0.0)
processes = _query_gpu_processes_via_nvml(device_index) or _query_gpu_processes_via_nvidiasmi(device_index)
print(f"\n--- [LOG GPU] {stage_name} (cuda:{device_index}) ---")
print(f" - Reservado: {current_reserved_mb:.2f} MB / {total_memory_mb:.2f} MB (Δ={delta_mb:+.2f} MB)")
if peak_reserved_mb > getattr(self, "last_memory_reserved_mb", 0.0):
print(f" - Pico reservado (nesta fase): {peak_reserved_mb:.2f} MB")
print(_gpu_process_table(processes, os.getpid()), end="")
print("--------------------------------------------------\n")
self.last_memory_reserved_mb = current_reserved_mb
def _register_tmp_dir(self, d: str):
if d and os.path.isdir(d):
self._tmp_dirs.add(d); print(f"[DEBUG] Registrado tmp dir: {d}")
def _register_tmp_file(self, f: str):
if f and os.path.exists(f):
self._tmp_files.add(f); print(f"[DEBUG] Registrado tmp file: {f}")
def finalize(self, keep_paths=None, extra_paths=None, clear_gpu=True):
print("[DEBUG] Finalize: iniciando limpeza...")
keep = set(keep_paths or []); extras = set(extra_paths or [])
removed_files = 0
for f in list(self._tmp_files | extras):
try:
if f not in keep and os.path.isfile(f):
os.remove(f); removed_files += 1; print(f"[DEBUG] Removido arquivo tmp: {f}")
except Exception as e:
print(f"[DEBUG] Falha removendo arquivo {f}: {e}")
finally:
self._tmp_files.discard(f)
removed_dirs = 0
for d in list(self._tmp_dirs):
try:
if d not in keep and os.path.isdir(d):
shutil.rmtree(d, ignore_errors=True); removed_dirs += 1; print(f"[DEBUG] Removido diretório tmp: {d}")
except Exception as e:
print(f"[DEBUG] Falha removendo diretório {d}: {e}")
finally:
self._tmp_dirs.discard(d)
print(f"[DEBUG] Finalize: arquivos removidos={removed_files}, dirs removidos={removed_dirs}")
gc.collect()
try:
if clear_gpu and torch.cuda.is_available():
torch.cuda.empty_cache()
try:
torch.cuda.ipc_collect()
except Exception:
pass
except Exception as e:
print(f"[DEBUG] Finalize: limpeza GPU falhou: {e}")
try:
self._log_gpu_memory("Após finalize")
except Exception as e:
print(f"[DEBUG] Log GPU pós-finalize falhou: {e}")
def _load_config(self):
base = LTX_VIDEO_REPO_DIR / "configs"
candidates = [
base / "ltxv-13b-0.9.8-dev-fp8.yaml",
base / "ltxv-13b-0.9.8-distilled-fp8.yaml",
base / "ltxv-13b-0.9.8-dev-fp8.yaml.txt",
base / "ltxv-13b-0.9.8-distilled.yaml",
]
for cfg in candidates:
if cfg.exists():
print(f"[DEBUG] Config selecionada: {cfg}")
with open(cfg, "r") as file:
return yaml.safe_load(file)
cfg = base / "ltxv-13b-0.9.8-distilled.yaml"
print(f"[DEBUG] Config fallback: {cfg}")
with open(cfg, "r") as file:
return yaml.safe_load(file)
def _load_models(self):
t0 = time.perf_counter()
LTX_REPO = "Lightricks/LTX-Video"
print("[DEBUG] Baixando checkpoint principal...")
distilled_model_path = hf_hub_download(
repo_id=LTX_REPO,
filename=self.config["checkpoint_path"],
local_dir=os.getenv("HF_HOME"),
cache_dir=os.getenv("HF_HOME_CACHE"),
token=os.getenv("HF_TOKEN"),
)
self.config["checkpoint_path"] = distilled_model_path
print(f"[DEBUG] Checkpoint em: {distilled_model_path}")
print("[DEBUG] Baixando upscaler espacial...")
spatial_upscaler_path = hf_hub_download(
repo_id=LTX_REPO,
filename=self.config["spatial_upscaler_model_path"],
local_dir=os.getenv("HF_HOME"),
cache_dir=os.getenv("HF_HOME_CACHE"),
token=os.getenv("HF_TOKEN"),
)
self.config["spatial_upscaler_model_path"] = spatial_upscaler_path
print(f"[DEBUG] Upscaler em: {spatial_upscaler_path}")
print("[DEBUG] Construindo pipeline...")
pipeline = create_ltx_video_pipeline(
ckpt_path=self.config["checkpoint_path"],
precision=self.config["precision"],
text_encoder_model_name_or_path=self.config["text_encoder_model_name_or_path"],
sampler=self.config["sampler"],
device="cpu",
enhance_prompt=False,
prompt_enhancer_image_caption_model_name_or_path=self.config["prompt_enhancer_image_caption_model_name_or_path"],
prompt_enhancer_llm_model_name_or_path=self.config["prompt_enhancer_llm_model_name_or_path"],
)
print("[DEBUG] Pipeline pronto.")
latent_upsampler = None
if self.config.get("spatial_upscaler_model_path"):
print("[DEBUG] Construindo latent_upsampler...")
latent_upsampler = create_latent_upsampler(self.config["spatial_upscaler_model_path"], device="cpu")
print("[DEBUG] Upsampler pronto.")
print(f"[DEBUG] _load_models() tempo total={time.perf_counter()-t0:.3f}s")
return pipeline, latent_upsampler
def _promote_fp8_weights_to_bf16(self, module):
if not isinstance(module, torch.nn.Module):
print("[DEBUG] Promoção FP8→BF16 ignorada: alvo não é nn.Module.")
return
f8 = getattr(torch, "float8_e4m3fn", None)
if f8 is None:
print("[DEBUG] torch.float8_e4m3fn indisponível.")
return
p_cnt = b_cnt = 0
for _, p in module.named_parameters(recurse=True):
try:
if p.dtype == f8:
with torch.no_grad():
p.data = p.data.to(torch.bfloat16); p_cnt += 1
except Exception:
pass
for _, b in module.named_buffers(recurse=True):
try:
if hasattr(b, "dtype") and b.dtype == f8:
b.data = b.data.to(torch.bfloat16); b_cnt += 1
except Exception:
pass
print(f"[DEBUG] FP8→BF16: params_promoted={p_cnt}, buffers_promoted={b_cnt}")
def _apply_precision_policy(self):
prec = str(self.config.get("precision", "")).lower()
self.runtime_autocast_dtype = torch.float32
print(f"[DEBUG] Aplicando política de precisão: {prec}")
if prec == "float8_e4m3fn":
self.runtime_autocast_dtype = torch.bfloat16
force_promote = os.getenv("LTXV_FORCE_BF16_ON_FP8", "0") == "1"
print(f"[DEBUG] FP8 detectado. force_promote={force_promote}")
if force_promote and hasattr(torch, "float8_e4m3fn"):
try:
self._promote_fp8_weights_to_bf16(self.pipeline)
except Exception as e:
print(f"[DEBUG] Promoção FP8→BF16 na pipeline falhou: {e}")
try:
if self.latent_upsampler:
self._promote_fp8_weights_to_bf16(self.latent_upsampler)
except Exception as e:
print(f"[DEBUG] Promoção FP8→BF16 no upsampler falhou: {e}")
elif prec == "bfloat16":
self.runtime_autocast_dtype = torch.bfloat16
elif prec == "mixed_precision":
self.runtime_autocast_dtype = torch.float16
else:
self.runtime_autocast_dtype = torch.float32
def _prepare_conditioning_tensor(self, filepath, height, width, padding_values):
print(f"[DEBUG] Carregando condicionamento: {filepath}")
tensor = load_image_to_tensor_with_resize_and_crop(filepath, height, width)
tensor = torch.nn.functional.pad(tensor, padding_values)
out = tensor.to(self.device, dtype=self.runtime_autocast_dtype) if self.device == "cuda" else tensor.to(self.device)
print(f"[DEBUG] Cond shape={tuple(out.shape)} dtype={out.dtype} device={out.device}")
return out
# --- 6. GERAÇÃO ---
def generate(
self,
prompt,
negative_prompt,
mode="text-to-video",
start_image_filepath=None,
middle_image_filepath=None,
middle_frame_number=None,
middle_image_weight=1.0,
end_image_filepath=None,
end_image_weight=1.0,
input_video_filepath=None,
height=512,
width=704,
duration=2.0,
frames_to_use=9,
seed=42,
randomize_seed=True,
guidance_scale=3.0,
improve_texture=True,
progress_callback=None,
# Sempre latent → VAE → MP4 (simples)
external_decode=True,
):
t_all = time.perf_counter()
print(f"[DEBUG] generate() begin mode={mode} external_decode={external_decode} improve_texture={improve_texture}")
if self.device == "cuda":
torch.cuda.empty_cache(); torch.cuda.reset_peak_memory_stats()
self._log_gpu_memory("Início da Geração")
if mode == "image-to-video" and not start_image_filepath:
raise ValueError("A imagem de início é obrigatória para o modo image-to-video")
if mode == "video-to-video" and not input_video_filepath:
raise ValueError("O vídeo de entrada é obrigatório para o modo video-to-video")
used_seed = random.randint(0, 2**32 - 1) if randomize_seed else int(seed)
seed_everething(used_seed); print(f"[DEBUG] Seed usado: {used_seed}")
FPS = 24.0; MAX_NUM_FRAMES = 257
target_frames_rounded = round(duration * FPS)
n_val = round((float(target_frames_rounded) - 1.0) / 8.0)
actual_num_frames = max(9, min(MAX_NUM_FRAMES, int(n_val * 8 + 1)))
print(f"[DEBUG] Frames alvo: {actual_num_frames} (dur={duration}s @ {FPS}fps)")
height_padded = ((height - 1) // 32 + 1) * 32
width_padded = ((width - 1) // 32 + 1) * 32
padding_values = calculate_padding(height, width, height_padded, width_padded)
print(f"[DEBUG] Dimensões: ({height},{width}) -> pad ({height_padded},{width_padded}); padding={padding_values}")
generator = torch.Generator(device=self.device).manual_seed(used_seed)
conditioning_items = []
if mode == "image-to-video":
start_tensor = self._prepare_conditioning_tensor(start_image_filepath, height, width, padding_values)
conditioning_items.append(ConditioningItem(start_tensor, 0, 1.0))
if middle_image_filepath and middle_frame_number is not None:
middle_tensor = self._prepare_conditioning_tensor(middle_image_filepath, height, width, padding_values)
safe_middle_frame = max(0, min(int(middle_frame_number), actual_num_frames - 1))
conditioning_items.append(ConditioningItem(middle_tensor, safe_middle_frame, float(middle_image_weight)))
if end_image_filepath:
end_tensor = self._prepare_conditioning_tensor(end_image_filepath, height, width, padding_values)
last_frame_index = actual_num_frames - 1
conditioning_items.append(ConditioningItem(end_tensor, last_frame_index, float(end_image_weight)))
print(f"[DEBUG] Conditioning items: {len(conditioning_items)}")
# Sempre pedimos latentes (simples)
call_kwargs = {
"prompt": prompt,
"negative_prompt": negative_prompt,
"height": height_padded,
"width": width_padded,
"num_frames": actual_num_frames,
"frame_rate": int(FPS),
"generator": generator,
"output_type": "latent",
"conditioning_items": conditioning_items if conditioning_items else None,
"media_items": None,
"decode_timestep": self.config["decode_timestep"],
"decode_noise_scale": self.config["decode_noise_scale"],
"stochastic_sampling": self.config["stochastic_sampling"],
"image_cond_noise_scale": 0.15,
"is_video": True,
"vae_per_channel_normalize": True,
"mixed_precision": (self.config["precision"] == "mixed_precision"),
"offload_to_cpu": False,
"enhance_prompt": False,
"skip_layer_strategy": SkipLayerStrategy.AttentionValues,
}
print(f"[DEBUG] output_type={call_kwargs['output_type']} skip_layer_strategy={call_kwargs['skip_layer_strategy']}")
if mode == "video-to-video":
media = load_media_file(
media_path=input_video_filepath,
height=height,
width=width,
max_frames=int(frames_to_use),
padding=padding_values,
).to(self.device)
call_kwargs["media_items"] = media
print(f"[DEBUG] media_items shape={tuple(media.shape)}")
latents = None
multi_scale_pipeline = None
try:
if improve_texture:
if not self.latent_upsampler:
raise ValueError("Upscaler espacial não carregado.")
print("[DEBUG] Multi-escala: construindo pipeline...")
multi_scale_pipeline = LTXMultiScalePipeline(self.pipeline, self.latent_upsampler)
first_pass_args = self.config.get("first_pass", {}).copy()
first_pass_args["guidance_scale"] = float(guidance_scale)
second_pass_args = self.config.get("second_pass", {}).copy()
second_pass_args["guidance_scale"] = float(guidance_scale)
multi_scale_call_kwargs = call_kwargs.copy()
multi_scale_call_kwargs.update(
{
"downscale_factor": self.config["downscale_factor"],
"first_pass": first_pass_args,
"second_pass": second_pass_args,
}
)
print("[DEBUG] Chamando multi_scale_pipeline...")
t_ms = time.perf_counter()
ctx = torch.autocast(device_type="cuda", dtype=self.runtime_autocast_dtype) if self.device == "cuda" else contextlib.nullcontext()
with ctx:
result = multi_scale_pipeline(**multi_scale_call_kwargs)
print(f"[DEBUG] multi_scale_pipeline tempo={time.perf_counter()-t_ms:.3f}s")
# Captura latentes
if hasattr(result, "latents"):
latents = result.latents
elif hasattr(result, "images") and isinstance(result.images, torch.Tensor):
latents = result.images
else:
latents = result
print(f"[DEBUG] Latentes (multi-escala): shape={tuple(latents.shape)}")
else:
single_pass_kwargs = call_kwargs.copy()
first_pass_config = self.config.get("first_pass", {})
single_pass_kwargs.update(
{
"guidance_scale": float(guidance_scale),
"stg_scale": first_pass_config.get("stg_scale"),
"rescaling_scale": first_pass_config.get("rescaling_scale"),
"skip_block_list": first_pass_config.get("skip_block_list"),
}
)
schedule = first_pass_config.get("timesteps") or first_pass_config.get("guidance_timesteps")
if mode == "video-to-video":
schedule = [0.7]; print("[INFO] Modo video-to-video (etapa única): timesteps=[0.7]")
if isinstance(schedule, (list, tuple)) and len(schedule) > 0:
single_pass_kwargs["timesteps"] = schedule
single_pass_kwargs["guidance_timesteps"] = schedule
print(f"[DEBUG] Single-pass: timesteps_len={len(schedule) if schedule else 0}")
print("\n[INFO] Executando pipeline de etapa única...")
t_sp = time.perf_counter()
ctx = torch.autocast(device_type="cuda", dtype=self.runtime_autocast_dtype) if self.device == "cuda" else contextlib.nullcontext()
with ctx:
result = self.pipeline(**single_pass_kwargs)
print(f"[DEBUG] single-pass tempo={time.perf_counter()-t_sp:.3f}s")
if hasattr(result, "latents"):
latents = result.latents
elif hasattr(result, "images") and isinstance(result.images, torch.Tensor):
latents = result.images
else:
latents = result
print(f"[DEBUG] Latentes (single-pass): shape={tuple(latents.shape)}")
# Staging e escrita MP4 (simples: VAE → pixels → MP4)
temp_dir = tempfile.mkdtemp(prefix="ltxv_"); self._register_tmp_dir(temp_dir)
results_dir = "/app/output"; os.makedirs(results_dir, exist_ok=True)
output_video_path = os.path.join(temp_dir, f"output_{used_seed}.mp4")
final_output_path = None
pixel_tensor = vae_manager_singleton.decode(
latents.to(self.device, non_blocking=True),
decode_timestep=float(self.config.get("decode_timestep", 0.05))
)
print("[DEBUG] Decodificando bloco de latentes com VAE → tensor de pixels...")
# Se desejar “desocupar” a GPU antes do decode, pode-se mover p/ CPU e limpar:
# latents_cpu = latents.detach().to("cpu", non_blocking=True); torch.cuda.empty_cache(); torch.cuda.ipc_collect(); latents = latents_cpu.to(self.device)
pixel_tensor = vae_manager_singleton.decode(latents.to(self.device, non_blocking=True))
log_tensor_info(pixel_tensor, "Pixel tensor (VAE saída)")
print("[DEBUG] Codificando MP4 a partir do tensor de pixels (bloco inteiro)...")
video_encode_tool_singleton.save_video_from_tensor(
pixel_tensor,
output_video_path,
fps=call_kwargs["frame_rate"]
)
candidate_final = os.path.join(results_dir, f"output_{used_seed}.mp4")
try:
shutil.move(output_video_path, candidate_final)
final_output_path = candidate_final
print(f"[DEBUG] MP4 movido para {final_output_path}")
except Exception as e:
final_output_path = output_video_path
print(f"[DEBUG] Falha no move; usando tmp como final: {e}")
self._register_tmp_file(output_video_path)
self._log_gpu_memory("Fim da Geração")
print(f"[DEBUG] generate() fim ok. total_time={time.perf_counter()-t_all:.3f}s")
return final_output_path, used_seed
except Exception as e:
print("[DEBUG] EXCEÇÃO NA GERAÇÃO:")
print("".join(traceback.format_exception(type(e), e, e.__traceback__)))
raise
finally:
try:
del latents
except Exception:
pass
try:
del multi_scale_pipeline
except Exception:
pass
gc.collect()
try:
if self.device == "cuda":
torch.cuda.empty_cache()
try:
torch.cuda.ipc_collect()
except Exception:
pass
except Exception as e:
print(f"[DEBUG] Limpeza GPU no finally falhou: {e}")
try:
self.finalize(keep_paths=[])
except Exception as e:
print(f"[DEBUG] finalize() no finally falhou: {e}")
print("Criando instância do VideoService. O carregamento do modelo começará agora...")
video_generation_service = VideoService()
|