SummarizerApp / V3_FIX_URL_AND_TEXT_INPUT.md
ming
Fix V3 API to support both URL and text input
f724bab
# V3 API Fix: Support Both URL and Text Input
## Problem Statement
The V3 endpoint `/api/v3/scrape-and-summarize/stream` currently only accepts URLs in the request body. When the Android app sends plain text instead of a URL, the request fails with **422 Unprocessable Entity** due to URL validation failure.
### Error Symptoms
```
INFO: 10.16.17.219:29372 - "POST /api/v3/scrape-and-summarize/stream HTTP/1.1" 422 Unprocessable Entity
2025-11-11 05:39:49,140 - app.core.middleware - INFO - Request lXqCov: POST /api/v3/scrape-and-summarize/stream
2025-11-11 05:39:49,143 - app.core.middleware - INFO - Response lXqCov: 422 (2.64ms)
```
**Key Indicator:** Response time < 3ms means the request is failing at **schema validation** before any scraping logic runs.
### Root Cause
**Current Schema** (`app/api/v3/schemas.py`):
```python
class ScrapeAndSummarizeRequest(BaseModel):
url: str = Field(..., description="URL of article to scrape and summarize")
# ... other fields
@validator('url')
def validate_url(cls, v):
# URL validation regex that rejects plain text
if not url_pattern.match(v):
raise ValueError('Invalid URL format')
return v
```
**Problem:** The `url` field is **required** and must match URL pattern. When Android app sends plain text (non-URL), validation fails β†’ 422 error.
---
## Solution Overview
Make the V3 endpoint **intelligent** - it should handle both:
1. **URL Input** β†’ Scrape article from URL + Summarize
2. **Text Input** β†’ Skip scraping + Summarize directly
This provides a single, unified endpoint for the Android app without needing to choose between multiple endpoints.
---
## Design Approach
### Option 1: Flexible Input Field (Recommended)
**Schema Design:**
```python
class ScrapeAndSummarizeRequest(BaseModel):
url: Optional[str] = None
text: Optional[str] = None
# ... other fields (max_tokens, temperature, etc.)
@model_validator(mode='after')
def check_url_or_text(self):
"""Ensure exactly one of url or text is provided."""
if not self.url and not self.text:
raise ValueError('Either url or text must be provided')
if self.url and self.text:
raise ValueError('Provide either url OR text, not both')
return self
@field_validator('url')
def validate_url(cls, v):
"""Validate URL format if provided."""
if v is None:
return v
# URL validation logic
return v
@field_validator('text')
def validate_text(cls, v):
"""Validate text if provided."""
if v is None:
return v
if len(v) < 50:
raise ValueError('Text too short (minimum 50 characters)')
if len(v) > 50000:
raise ValueError('Text too long (maximum 50,000 characters)')
return v
```
**Request Examples:**
```json
// URL-based request (scraping enabled)
{
"url": "https://example.com/article",
"max_tokens": 256,
"temperature": 0.3
}
// Text-based request (direct summarization)
{
"text": "Your article text here...",
"max_tokens": 256,
"temperature": 0.3
}
```
**Endpoint Logic:**
```python
@router.post("/scrape-and-summarize/stream")
async def scrape_and_summarize_stream(
request: Request,
payload: ScrapeAndSummarizeRequest
):
"""Handle both URL scraping and direct text summarization."""
# Determine input type
if payload.url:
# URL input β†’ Scrape + Summarize
article_data = await article_scraper_service.scrape_article(payload.url)
text_to_summarize = article_data['text']
metadata = {
'title': article_data.get('title'),
'author': article_data.get('author'),
'source': 'scraped',
'scrape_latency_ms': article_data.get('scrape_time_ms')
}
else:
# Text input β†’ Direct Summarization
text_to_summarize = payload.text
metadata = {
'source': 'direct_text',
'text_length': len(payload.text)
}
# Stream summarization (same for both paths)
return StreamingResponse(
_stream_generator(text_to_summarize, payload, metadata, request_id),
media_type="text/event-stream",
headers={"Cache-Control": "no-cache", ...}
)
```
---
### Option 2: Auto-Detection (Alternative)
**Schema Design:**
```python
class ScrapeAndSummarizeRequest(BaseModel):
input: str = Field(..., description="URL to scrape OR text to summarize")
# ... other fields
```
**Endpoint Logic:**
```python
# Auto-detect if input is URL or text
if _is_valid_url(payload.input):
# URL detected β†’ Scrape + Summarize
article_data = await article_scraper_service.scrape_article(payload.input)
text_to_summarize = article_data['text']
else:
# Plain text detected β†’ Direct Summarization
text_to_summarize = payload.input
```
**Pros:**
- Single input field (simpler API)
- Auto-detection is smart
**Cons:**
- Ambiguous: What if text looks like a URL?
- Harder to debug issues
- Less explicit intent
**Verdict:** Option 1 is clearer and more explicit.
---
## Implementation Plan
### Step 1: Update Request Schema
**File:** `app/api/v3/schemas.py`
**Changes:**
1. Make `url` field Optional (change from required to `Optional[str] = None`)
2. Add `text` field as Optional (`Optional[str] = None`)
3. Add `@model_validator` to ensure exactly one is provided
4. Update `url` validator to handle None
5. Add `text` validator for length constraints
**Code:**
```python
from pydantic import BaseModel, Field, field_validator, model_validator
from typing import Optional
import re
class ScrapeAndSummarizeRequest(BaseModel):
"""Request schema supporting both URL scraping and direct text summarization."""
url: Optional[str] = Field(
None,
description="URL of article to scrape and summarize",
example="https://example.com/article"
)
text: Optional[str] = Field(
None,
description="Direct text to summarize (alternative to URL)",
example="Your article text here..."
)
max_tokens: Optional[int] = Field(
default=256,
ge=1,
le=2048,
description="Maximum tokens in summary"
)
temperature: Optional[float] = Field(
default=0.3,
ge=0.0,
le=2.0,
description="Sampling temperature"
)
top_p: Optional[float] = Field(
default=0.9,
ge=0.0,
le=1.0,
description="Nucleus sampling"
)
prompt: Optional[str] = Field(
default="Summarize this article concisely:",
description="Custom summarization prompt"
)
include_metadata: Optional[bool] = Field(
default=True,
description="Include article metadata in response"
)
use_cache: Optional[bool] = Field(
default=True,
description="Use cached content if available (URL mode only)"
)
@model_validator(mode='after')
def check_url_or_text(self):
"""Ensure exactly one of url or text is provided."""
if not self.url and not self.text:
raise ValueError('Either "url" or "text" must be provided')
if self.url and self.text:
raise ValueError('Provide either "url" OR "text", not both')
return self
@field_validator('url')
@classmethod
def validate_url(cls, v: Optional[str]) -> Optional[str]:
"""Validate URL format if provided."""
if v is None:
return v
# URL validation regex
url_pattern = re.compile(
r'^https?://' # http:// or https://
r'(?:(?:[A-Z0-9](?:[A-Z0-9-]{0,61}[A-Z0-9])?\.)+[A-Z]{2,6}\.?|' # domain
r'localhost|' # localhost
r'\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})' # or IP
r'(?::\d+)?' # optional port
r'(?:/?|[/?]\S+)$', re.IGNORECASE
)
if not url_pattern.match(v):
raise ValueError('Invalid URL format. Must start with http:// or https://')
# SSRF protection
v_lower = v.lower()
if 'localhost' in v_lower or '127.0.0.1' in v:
raise ValueError('Cannot scrape localhost URLs')
if any(private in v for private in ['192.168.', '10.', '172.16.', '172.17.', '172.18.']):
raise ValueError('Cannot scrape private IP addresses')
if len(v) > 2000:
raise ValueError('URL too long (maximum 2000 characters)')
return v
@field_validator('text')
@classmethod
def validate_text(cls, v: Optional[str]) -> Optional[str]:
"""Validate text content if provided."""
if v is None:
return v
if len(v) < 50:
raise ValueError('Text too short (minimum 50 characters)')
if len(v) > 50000:
raise ValueError('Text too long (maximum 50,000 characters)')
# Check for mostly whitespace
non_whitespace = len(v.replace(' ', '').replace('\n', '').replace('\t', ''))
if non_whitespace < 30:
raise ValueError('Text contains mostly whitespace')
return v
```
---
### Step 2: Update Endpoint Logic
**File:** `app/api/v3/scrape_summarize.py`
**Changes:**
1. Detect input type (URL vs text)
2. Branch logic accordingly
3. Adjust metadata based on input type
4. Keep streaming logic the same
**Code:**
```python
@router.post("/scrape-and-summarize/stream")
async def scrape_and_summarize_stream(
request: Request,
payload: ScrapeAndSummarizeRequest
):
"""
Scrape article from URL OR summarize provided text.
Supports two modes:
1. URL mode: Scrape article from URL then summarize
2. Text mode: Summarize provided text directly
Returns:
Server-Sent Events stream with metadata and content chunks
"""
request_id = getattr(request.state, 'request_id', 'unknown')
# Determine input mode
if payload.url:
# URL Mode: Scrape + Summarize
logger.info(f"[{request_id}] V3 URL mode: {payload.url}")
scrape_start = time.time()
try:
article_data = await article_scraper_service.scrape_article(
url=payload.url,
use_cache=payload.use_cache
)
except Exception as e:
logger.error(f"[{request_id}] Scraping failed: {e}")
raise HTTPException(
status_code=502,
detail=f"Failed to scrape article: {str(e)}"
)
scrape_latency_ms = (time.time() - scrape_start) * 1000
logger.info(f"[{request_id}] Scraped in {scrape_latency_ms:.2f}ms, "
f"extracted {len(article_data['text'])} chars")
# Validate scraped content
if len(article_data['text']) < 100:
raise HTTPException(
status_code=422,
detail="Insufficient content extracted from URL. "
"Article may be behind paywall or site may block scrapers."
)
text_to_summarize = article_data['text']
metadata = {
'input_type': 'url',
'url': payload.url,
'title': article_data.get('title'),
'author': article_data.get('author'),
'date': article_data.get('date'),
'site_name': article_data.get('site_name'),
'scrape_method': article_data.get('method', 'static'),
'scrape_latency_ms': scrape_latency_ms,
'extracted_text_length': len(article_data['text']),
}
else:
# Text Mode: Direct Summarization
logger.info(f"[{request_id}] V3 text mode: {len(payload.text)} chars")
text_to_summarize = payload.text
metadata = {
'input_type': 'text',
'text_length': len(payload.text),
}
# Stream summarization (same for both modes)
return StreamingResponse(
_stream_generator(text_to_summarize, payload, metadata, request_id),
media_type="text/event-stream",
headers={
"Cache-Control": "no-cache",
"Connection": "keep-alive",
"X-Accel-Buffering": "no",
"X-Request-ID": request_id,
}
)
async def _stream_generator(text: str, payload, metadata: dict, request_id: str):
"""Generate SSE stream for summarization."""
# Send metadata event first
if payload.include_metadata:
metadata_event = {
"type": "metadata",
"data": metadata
}
yield f"data: {json.dumps(metadata_event)}\n\n"
# Stream summarization chunks
summarization_start = time.time()
tokens_used = 0
try:
async for chunk in hf_streaming_service.summarize_text_stream(
text=text,
max_new_tokens=payload.max_tokens,
temperature=payload.temperature,
top_p=payload.top_p,
prompt=payload.prompt,
):
if not chunk.get('done', False):
tokens_used = chunk.get('tokens_used', tokens_used)
yield f"data: {json.dumps(chunk)}\n\n"
except Exception as e:
logger.error(f"[{request_id}] Summarization failed: {e}")
error_event = {
"type": "error",
"error": str(e),
"done": True
}
yield f"data: {json.dumps(error_event)}\n\n"
return
summarization_latency_ms = (time.time() - summarization_start) * 1000
# Calculate total latency
total_latency_ms = summarization_latency_ms
if metadata.get('input_type') == 'url':
total_latency_ms += metadata.get('scrape_latency_ms', 0)
logger.info(f"[{request_id}] V3 request completed in {total_latency_ms:.2f}ms")
```
---
### Step 3: Update Tests
**File:** `tests/test_v3_api.py`
**New Test Cases:**
```python
@pytest.mark.asyncio
async def test_v3_text_mode_success(client):
"""Test V3 endpoint with text input (no scraping)."""
response = await client.post(
"/api/v3/scrape-and-summarize/stream",
json={
"text": "This is a test article with enough content to summarize properly. "
"It has multiple sentences and provides meaningful information.",
"max_tokens": 128,
"include_metadata": True
}
)
assert response.status_code == 200
assert response.headers['content-type'] == 'text/event-stream'
# Parse SSE stream
events = []
for line in response.text.split('\n'):
if line.startswith('data: '):
events.append(json.loads(line[6:]))
# Check metadata event
metadata_event = next(e for e in events if e.get('type') == 'metadata')
assert metadata_event['data']['input_type'] == 'text'
assert metadata_event['data']['text_length'] > 0
assert 'scrape_latency_ms' not in metadata_event['data'] # No scraping in text mode
# Check content events exist
content_events = [e for e in events if 'content' in e]
assert len(content_events) > 0
@pytest.mark.asyncio
async def test_v3_url_mode_success(client):
"""Test V3 endpoint with URL input (with scraping)."""
with patch('app.services.article_scraper.article_scraper_service.scrape_article') as mock_scrape:
mock_scrape.return_value = {
'text': 'Scraped article content here...',
'title': 'Test Article',
'url': 'https://example.com/test',
'method': 'static'
}
response = await client.post(
"/api/v3/scrape-and-summarize/stream",
json={
"url": "https://example.com/test",
"max_tokens": 128
}
)
assert response.status_code == 200
# Parse events
events = []
for line in response.text.split('\n'):
if line.startswith('data: '):
events.append(json.loads(line[6:]))
# Check metadata shows URL mode
metadata_event = next(e for e in events if e.get('type') == 'metadata')
assert metadata_event['data']['input_type'] == 'url'
assert 'scrape_latency_ms' in metadata_event['data']
@pytest.mark.asyncio
async def test_v3_missing_both_url_and_text(client):
"""Test validation error when neither url nor text provided."""
response = await client.post(
"/api/v3/scrape-and-summarize/stream",
json={
"max_tokens": 128
}
)
assert response.status_code == 422
error_detail = response.json()['detail']
assert 'url' in error_detail[0]['loc'] or 'text' in error_detail[0]['loc']
@pytest.mark.asyncio
async def test_v3_both_url_and_text_provided(client):
"""Test validation error when both url and text provided."""
response = await client.post(
"/api/v3/scrape-and-summarize/stream",
json={
"url": "https://example.com/test",
"text": "Some text here",
"max_tokens": 128
}
)
assert response.status_code == 422
@pytest.mark.asyncio
async def test_v3_text_too_short(client):
"""Test validation error for text that's too short."""
response = await client.post(
"/api/v3/scrape-and-summarize/stream",
json={
"text": "Too short", # Less than 50 chars
"max_tokens": 128
}
)
assert response.status_code == 422
assert 'too short' in response.json()['detail'][0]['msg'].lower()
```
---
### Step 4: Update Documentation
**File:** `CLAUDE.md`
**Update V3 API section:**
```markdown
### V3 API (/api/v3/*): Web Scraping + Summarization
**Endpoint:** POST `/api/v3/scrape-and-summarize/stream`
**Supports two modes:**
1. **URL Mode** (scraping enabled):
```json
{
"url": "https://example.com/article",
"max_tokens": 256
}
```
- Scrapes article from URL
- Caches result for 1 hour
- Streams summarization
2. **Text Mode** (direct summarization):
```json
{
"text": "Your article text here...",
"max_tokens": 256
}
```
- Skips scraping
- Summarizes text directly
- Useful when scraping fails or text already extracted
**Features:**
- Intelligent input detection (URL vs text)
- Backend web scraping with trafilatura
- In-memory caching (URL mode only)
- User-agent rotation
- Metadata extraction (URL mode: title, author, date)
- SSRF protection
- Rate limiting
**Response Format:**
Same Server-Sent Events format for both modes:
```
data: {"type":"metadata","data":{"input_type":"url|text",...}}
data: {"content":"token","done":false,"tokens_used":N}
data: {"content":"","done":true,"latency_ms":MS}
```
```
**File:** `README.md`
**Add usage examples:**
```markdown
### V3 API Examples
**Scrape and Summarize from URL:**
```bash
curl -X POST "https://your-space.hf.space/api/v3/scrape-and-summarize/stream" \
-H "Content-Type: application/json" \
-d '{
"url": "https://example.com/article",
"max_tokens": 256,
"temperature": 0.3
}'
```
**Summarize Direct Text:**
```bash
curl -X POST "https://your-space.hf.space/api/v3/scrape-and-summarize/stream" \
-H "Content-Type: application/json" \
-d '{
"text": "Your article text here...",
"max_tokens": 256,
"temperature": 0.3
}'
```
**Python Example:**
```python
import requests
# URL mode
response = requests.post(
"https://your-space.hf.space/api/v3/scrape-and-summarize/stream",
json={"url": "https://example.com/article", "max_tokens": 256},
stream=True
)
# Text mode
response = requests.post(
"https://your-space.hf.space/api/v3/scrape-and-summarize/stream",
json={"text": "Article content here...", "max_tokens": 256},
stream=True
)
for line in response.iter_lines():
if line.startswith(b'data: '):
data = json.loads(line[6:])
if data.get('content'):
print(data['content'], end='')
```
```
---
## Benefits of This Approach
### 1. Single Unified Endpoint
- Android app uses one endpoint for everything
- No need to choose between `/api/v2/` and `/api/v3/`
- Simpler client-side logic
### 2. Graceful Fallback
- If scraping fails (paywall, blocked), user can paste text manually
- App can catch 502 errors and prompt user to provide text directly
### 3. Backward Compatible
- Existing URL-based requests still work
- No breaking changes for current users
### 4. Better Error Messages
```json
// Missing both
{
"detail": [
{
"type": "value_error",
"msg": "Either 'url' or 'text' must be provided"
}
]
}
// Both provided
{
"detail": [
{
"type": "value_error",
"msg": "Provide either 'url' OR 'text', not both"
}
]
}
// Text too short
{
"detail": [
{
"loc": ["body", "text"],
"msg": "Text too short (minimum 50 characters)"
}
]
}
```
### 5. Clear Metadata
```json
// URL mode metadata
{
"type": "metadata",
"data": {
"input_type": "url",
"url": "https://...",
"title": "Article Title",
"scrape_latency_ms": 450.2
}
}
// Text mode metadata
{
"type": "metadata",
"data": {
"input_type": "text",
"text_length": 1234
}
}
```
---
## Testing Checklist
- [ ] Test URL mode with valid URL
- [ ] Test text mode with valid text
- [ ] Test validation: missing both url and text (expect 422)
- [ ] Test validation: both url and text provided (expect 422)
- [ ] Test validation: text too short (< 50 chars, expect 422)
- [ ] Test validation: text too long (> 50k chars, expect 422)
- [ ] Test validation: invalid URL format (expect 422)
- [ ] Test SSRF protection: localhost URL (expect 422)
- [ ] Test SSRF protection: private IP (expect 422)
- [ ] Test metadata event in URL mode (includes scrape_latency_ms)
- [ ] Test metadata event in text mode (no scrape_latency_ms)
- [ ] Test streaming format same for both modes
- [ ] Test cache works in URL mode
- [ ] Test cache not used in text mode
---
## Deployment Steps
1. **Update Schema** (`app/api/v3/schemas.py`)
- Make url Optional
- Add text Optional
- Add model_validator for mutual exclusivity
- Update validators
2. **Update Endpoint** (`app/api/v3/scrape_summarize.py`)
- Add input type detection
- Branch logic for URL vs text mode
- Adjust metadata
3. **Update Tests** (`tests/test_v3_api.py`)
- Add text mode tests
- Add validation tests
- Ensure 90% coverage
4. **Update Docs** (`CLAUDE.md`, `README.md`)
- Document both modes
- Add examples
5. **Test Locally**
```bash
pytest tests/test_v3_api.py -v
```
6. **Deploy to HF Spaces**
- Push changes
- Monitor logs
- Test both modes on live deployment
7. **Update Android App**
- App can now send either URL or text to same endpoint
- Graceful fallback: if scraping fails, prompt user for text
---
## Success Criteria
βœ… URL mode works (scraping + summarization)
βœ… Text mode works (direct summarization)
βœ… Validation errors are clear and helpful
βœ… No 422 errors when text is sent
βœ… Metadata correctly indicates input type
βœ… Tests pass with 90%+ coverage
βœ… Documentation updated
βœ… Android app can use single endpoint for both scenarios
---
## Estimated Impact
- **Code Changes:** ~100 lines modified
- **New Tests:** ~8 test cases
- **Breaking Changes:** None (backward compatible)
- **Performance:** No impact (same logic, just more flexible input)
- **Memory:** No impact
- **Deployment Time:** ~30 minutes
---
## Conclusion
This fix transforms the V3 API from a URL-only endpoint to a **smart, dual-mode endpoint** that gracefully handles both URLs and plain text. The Android app gains flexibility without added complexity, and users get better error messages when validation fails.
**Ready to implement!** πŸš€