File size: 11,900 Bytes
41494e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
# Backend Performance Analysis & Optimization Guide

## πŸ“Š Executive Summary

The Android app streaming functionality is working perfectly. However, users experience **60+ second delays** before seeing results due to backend cold start and processing time on Hugging Face Spaces.

**Impact:** Poor user experience, high abandonment risk  
**Root Cause:** Ollama model loading + CPU-only inference on HF free tier  
**Priority:** HIGH - Affects all users on every request

---

## πŸ” Performance Analysis

### Current Performance Metrics

**From HF Logs:**
```
2025-10-15 06:01:03 - POST /api/generate starts
2025-10-15 06:01:29 - Response 200 | Duration: 1m2s
```

**From Android Network Inspector:**
- Request Type: `event-stream` (SSE)
- Status: `200 OK`
- Total Time: **1 minute 3 seconds**
- Data Size: 8.1 KB

### Performance Breakdown

| Phase | Duration | Percentage |
|-------|----------|------------|
| Server Cold Start | 10-20s | 16-32% |
| Model Loading (Ollama) | 30-40s | 48-64% |
| Text Generation | 10-15s | 16-24% |
| **Total** | **60-65s** | **100%** |

### Root Causes

1. **Ollama on CPU-only infrastructure**
   - Using `localhost:11434/api/generate`
   - Model weights loaded on every cold start
   - CPU inference is 10-20x slower than GPU

2. **Hugging Face Free Tier Limitations**
   - Space goes to sleep after 15 minutes inactivity
   - Cold start required on wake-up
   - Shared CPU resources
   - No GPU access

3. **Large Input Text**
   - Processing 4,000+ character inputs
   - Longer inputs = longer generation time

---

## πŸ’‘ Optimization Recommendations

### Priority 1: Quick Wins (Can Implement Today)

#### 1.1 Replace Ollama with Faster Alternative
**Impact:** 70-85% faster inference  
**Effort:** 2-3 hours  
**Cost:** Free

**Current:** `llama3.2:1b` via Ollama  
**Problem:** Even though 1B is small, Ollama adds significant overhead:
- Ollama server startup time
- Model loading into memory (even 1B takes 20-30s on CPU)
- Ollama's API layer adds latency
- Not optimized for CPU-only inference

**Recommended Solutions:**

**Option A: Switch to Transformers Pipeline (FASTEST for CPU) ⭐**
```python
from transformers import pipeline

# Load once at startup
summarizer = pipeline(
    "summarization",
    model="sshleifer/distilbart-cnn-6-6",  # Optimized for speed
    device=-1  # CPU
)

# Use in your endpoint
summary = summarizer(
    text,
    max_length=130,
    min_length=30,
    do_sample=False
)
```
**Why it's faster:**
- No Ollama overhead
- Optimized for CPU with ONNX/quantization
- Faster model loading
- Better batching

**Expected:** 60s β†’ 8-12s (80% improvement)

**Option B: Use Smaller Specialized Model**
```python
# Tiny but effective for summarization
summarizer = pipeline(
    "summarization",
    model="facebook/bart-large-cnn",  # Well-optimized
    device=-1
)
```

**Expected:** 60s β†’ 10-15s (75% improvement)

**Option C: Keep llama3.2:1b but optimize Ollama**
If you must keep Llama3.2:
```python
# Pre-load model at startup
import ollama

@app.on_event("startup")
def load_model():
    # Warm up the model
    ollama.generate(model="llama3.2:1b", prompt="test")
```

**Expected:** 60s β†’ 25-35s (40% improvement)

---

#### 1.2 Keep Model Loaded in Memory
**Impact:** Eliminates 30-40s loading time  
**Effort:** 30 minutes  
**Cost:** Free

**Problem:**
Currently, the model is loaded for each request, adding 30-40s overhead.

**Solution:**
Load model once at application startup and keep it in memory.

```python
from fastapi import FastAPI
import ollama

app = FastAPI()

# Load model at startup (runs once)
@app.on_event("startup")
async def load_model():
    global model_client
    model_client = ollama.Client()
    # Warm up the model
    model_client.generate(
        model="phi3:mini",
        prompt="test",
        stream=False
    )
    print("Model loaded and ready!")

# Use pre-loaded model in endpoints
@app.post("/api/v1/summarize/stream")
async def summarize_stream(request: SummarizeRequest):
    response = model_client.generate(
        model="phi3:mini",
        prompt=request.text,
        stream=True
    )
    # ... stream response
```

**Expected Result:** 62s β†’ 15-25s (first request), 10-15s (subsequent)

---

#### 1.3 Set Up Keep-Warm Service
**Impact:** Eliminates cold starts  
**Effort:** 10 minutes  
**Cost:** Free

**Problem:**
HF Space goes to sleep after 15 minutes, causing 10-20s cold start.

**Solution:**
Ping your space every 10 minutes to keep it awake.

**Option A: UptimeRobot (Recommended)**
1. Go to https://uptimerobot.com
2. Create free account
3. Add HTTP(s) monitor:
   - URL: `https://colin730-summarizerapp.hf.space/`
   - Interval: 10 minutes
4. Done!

**Option B: GitHub Actions**
Create `.github/workflows/keep-warm.yml`:
```yaml
name: Keep HF Space Warm
on:
  schedule:
    - cron: '*/10 * * * *'  # Every 10 minutes
jobs:
  ping:
    runs-on: ubuntu-latest
    steps:
      - name: Ping Space
        run: |
          curl -f https://colin730-summarizerapp.hf.space/ || echo "Ping failed"
```

**Expected Result:** Eliminates 10-20s cold start delay

---

### Priority 2: Medium-term Solutions (This Week)

#### 2.1 Switch to Hugging Face Inference API
**Impact:** 70-80% faster  
**Effort:** 2-3 hours  
**Cost:** Free (with rate limits)

**Problem:**
Ollama is not optimized for CPU-only environments.

**Solution:**
Use HF's native transformers library with optimized models.

```python
from transformers import pipeline
from fastapi.responses import StreamingResponse
import json

# Load at startup (much faster than Ollama)
summarizer = pipeline(
    "summarization",
    model="facebook/bart-large-cnn",  # or "sshleifer/distilbart-cnn-12-6" for speed
    device=-1  # CPU
)

@app.post("/api/v1/summarize/stream")
async def summarize_stream(request: SummarizeRequest):
    async def generate():
        # Process in chunks for streaming effect
        text = request.text
        max_chunk_size = 1024
        
        for i in range(0, len(text), max_chunk_size):
            chunk = text[i:i + max_chunk_size]
            result = summarizer(
                chunk,
                max_length=150,
                min_length=30,
                do_sample=False
            )
            
            summary_chunk = result[0]['summary_text']
            
            # Stream as SSE
            yield f"data: {json.dumps({'content': summary_chunk, 'done': False})}\n\n"
        
        yield f"data: {json.dumps({'content': '', 'done': True})}\n\n"
    
    return StreamingResponse(generate(), media_type="text/event-stream")
```

**Advantages:**
- Faster loading (optimized for CPU)
- Better caching
- Native HF integration
- Simpler deployment

**Expected Result:** 62s β†’ 10-15s

---

#### 2.2 Implement Response Caching
**Impact:** Instant responses for repeated inputs  
**Effort:** 1-2 hours  
**Cost:** Free

```python
from functools import lru_cache
import hashlib

def get_cache_key(text: str) -> str:
    return hashlib.md5(text.encode()).hexdigest()

# Simple in-memory cache
summary_cache = {}

@app.post("/api/v1/summarize/stream")
async def summarize_stream(request: SummarizeRequest):
    cache_key = get_cache_key(request.text)
    
    # Check cache first
    if cache_key in summary_cache:
        cached_summary = summary_cache[cache_key]
        # Stream cached result
        async def stream_cached():
            for word in cached_summary.split():
                yield f"data: {json.dumps({'content': word + ' ', 'done': False})}\n\n"
            yield f"data: {json.dumps({'content': '', 'done': True})}\n\n"
        
        return StreamingResponse(stream_cached(), media_type="text/event-stream")
    
    # ... generate new summary and cache it
    summary_cache[cache_key] = summary
```

**Expected Result:** Cached requests: 1-2s (instant)

---

### Priority 3: Long-term Solutions (Upgrade Path)

#### 3.1 Upgrade to Hugging Face Pro
**Impact:** 80-90% faster, eliminates all cold starts  
**Effort:** 5 minutes  
**Cost:** $9/month

**Benefits:**
- Persistent hardware (no cold starts)
- GPU access (10-20x faster inference)
- Always-on instance
- Better resource allocation

**Expected Result:** 62s β†’ 3-5s consistently

---

#### 3.2 Migrate to Dedicated Infrastructure
**Impact:** Full control, optimal performance  
**Effort:** 4-8 hours  
**Cost:** $10-50/month

**Options:**
- **DigitalOcean GPU Droplet** ($10/month + GPU hours)
- **AWS Lambda + SageMaker** (Pay per use)
- **Railway.app** ($5-20/month)
- **Render.com** ($7-25/month)

**Advantages:**
- No cold starts
- GPU access
- Better monitoring
- Scalable

**Expected Result:** 62s β†’ 2-5s consistently

---

#### 3.3 Use Managed AI APIs
**Impact:** Instant responses, no infrastructure management  
**Effort:** 2-3 hours (API integration)  
**Cost:** Pay per use (~$0.001 per summary)

**Options:**

**OpenAI GPT-3.5/4:**
```python
import openai

response = openai.ChatCompletion.create(
    model="gpt-3.5-turbo",
    messages=[{
        "role": "user",
        "content": f"Summarize: {text}"
    }],
    stream=True
)

for chunk in response:
    # Stream to client
```
- Response time: 1-3s
- Cost: ~$0.001-0.003 per summary

**Anthropic Claude:**
```python
import anthropic

client = anthropic.Client(api_key="...")
response = client.messages.create(
    model="claude-3-haiku-20240307",
    messages=[{"role": "user", "content": f"Summarize: {text}"}],
    stream=True
)
```
- Response time: 1-2s
- Cost: ~$0.0005-0.002 per summary

**Google Gemini:**
- Free tier: 60 requests/minute
- Response time: 1-3s
- Cost: Free β†’ $0.0005 per summary

**Expected Result:** 62s β†’ 1-3s, zero maintenance

---

## πŸ“ˆ Performance Comparison

| Solution | Time | Cold Start | Cost | Effort | Recommendation |
|----------|------|------------|------|--------|----------------|
| **Current (llama3.2:1b + Ollama)** | 60-65s | Yes | Free | - | ❌ Poor UX |
| Keep-Warm Service | 50-55s | No | Free | 10min | ⭐ Do first |
| Pre-load Model | 35-45s | Yes | Free | 30min | ⭐ Do first |
| Switch to Transformers | 8-12s | Minimal | Free | 2-3hrs | ⭐⭐ Best free option |
| HF Pro + GPU | 3-5s | No | $9/mo | 5min | βœ… Best value |
| Managed API (OpenAI/Claude) | 1-3s | No | Pay/use | 2-3hrs | βœ… Best perf |

---

## 🎯 Recommended Implementation Plan

### Phase 1: Immediate (Do Today) ⚑
1. Set up UptimeRobot keep-warm (10 min)
2. Pre-load llama3.2 model at startup (30 min)

**Expected:** 60s β†’ 35-40s (35% improvement)

### Phase 2: This Week πŸ“…
1. **Replace Ollama with Transformers pipeline** (2-3 hrs) ⭐ BIGGEST IMPACT
2. Implement response caching (1-2 hrs)

**Expected:** 35s β†’ 8-12s (additional 70% improvement)

### Phase 3: Future Consideration πŸš€
1. Evaluate HF Pro vs Managed APIs
2. Based on usage patterns and budget, choose:
   - HF Pro if self-hosted control is important
   - Managed API if cost-per-use works better

**Expected:** 8s β†’ 2-5s (additional 60-75% improvement)

---

## πŸ“ž Next Steps

1. **Review this analysis** with the backend team
2. **Pick quick wins** from Phase 1 (can be done in <1 hour)
3. **Measure results** after each change
4. **Share metrics** so we can validate improvements

## πŸ“Š Success Metrics

- **Target:** < 10 seconds for first response
- **Ideal:** < 5 seconds for first response
- **Acceptable:** < 15 seconds with good UX feedback

---

## πŸ“ Additional Notes

**Current Stack:**
- Hugging Face Spaces (Free Tier)
- Ollama (localhost:11434)
- CPU-only inference
- Model: **llama3.2:1b** (Good choice for speed!)

**Android App Status:**
- βœ… Working perfectly
- βœ… Streaming implementation is correct
- βœ… UI updates in real-time once data arrives
- The only issue is waiting for backend to start responding

---

**Document Version:** 1.0  
**Date:** October 15, 2025  
**Prepared for:** Backend Team - SummarizeAI App  
**Contact:** Android Team