Spaces:
Running
Running
File size: 11,900 Bytes
41494e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 |
# Backend Performance Analysis & Optimization Guide
## π Executive Summary
The Android app streaming functionality is working perfectly. However, users experience **60+ second delays** before seeing results due to backend cold start and processing time on Hugging Face Spaces.
**Impact:** Poor user experience, high abandonment risk
**Root Cause:** Ollama model loading + CPU-only inference on HF free tier
**Priority:** HIGH - Affects all users on every request
---
## π Performance Analysis
### Current Performance Metrics
**From HF Logs:**
```
2025-10-15 06:01:03 - POST /api/generate starts
2025-10-15 06:01:29 - Response 200 | Duration: 1m2s
```
**From Android Network Inspector:**
- Request Type: `event-stream` (SSE)
- Status: `200 OK`
- Total Time: **1 minute 3 seconds**
- Data Size: 8.1 KB
### Performance Breakdown
| Phase | Duration | Percentage |
|-------|----------|------------|
| Server Cold Start | 10-20s | 16-32% |
| Model Loading (Ollama) | 30-40s | 48-64% |
| Text Generation | 10-15s | 16-24% |
| **Total** | **60-65s** | **100%** |
### Root Causes
1. **Ollama on CPU-only infrastructure**
- Using `localhost:11434/api/generate`
- Model weights loaded on every cold start
- CPU inference is 10-20x slower than GPU
2. **Hugging Face Free Tier Limitations**
- Space goes to sleep after 15 minutes inactivity
- Cold start required on wake-up
- Shared CPU resources
- No GPU access
3. **Large Input Text**
- Processing 4,000+ character inputs
- Longer inputs = longer generation time
---
## π‘ Optimization Recommendations
### Priority 1: Quick Wins (Can Implement Today)
#### 1.1 Replace Ollama with Faster Alternative
**Impact:** 70-85% faster inference
**Effort:** 2-3 hours
**Cost:** Free
**Current:** `llama3.2:1b` via Ollama
**Problem:** Even though 1B is small, Ollama adds significant overhead:
- Ollama server startup time
- Model loading into memory (even 1B takes 20-30s on CPU)
- Ollama's API layer adds latency
- Not optimized for CPU-only inference
**Recommended Solutions:**
**Option A: Switch to Transformers Pipeline (FASTEST for CPU) β**
```python
from transformers import pipeline
# Load once at startup
summarizer = pipeline(
"summarization",
model="sshleifer/distilbart-cnn-6-6", # Optimized for speed
device=-1 # CPU
)
# Use in your endpoint
summary = summarizer(
text,
max_length=130,
min_length=30,
do_sample=False
)
```
**Why it's faster:**
- No Ollama overhead
- Optimized for CPU with ONNX/quantization
- Faster model loading
- Better batching
**Expected:** 60s β 8-12s (80% improvement)
**Option B: Use Smaller Specialized Model**
```python
# Tiny but effective for summarization
summarizer = pipeline(
"summarization",
model="facebook/bart-large-cnn", # Well-optimized
device=-1
)
```
**Expected:** 60s β 10-15s (75% improvement)
**Option C: Keep llama3.2:1b but optimize Ollama**
If you must keep Llama3.2:
```python
# Pre-load model at startup
import ollama
@app.on_event("startup")
def load_model():
# Warm up the model
ollama.generate(model="llama3.2:1b", prompt="test")
```
**Expected:** 60s β 25-35s (40% improvement)
---
#### 1.2 Keep Model Loaded in Memory
**Impact:** Eliminates 30-40s loading time
**Effort:** 30 minutes
**Cost:** Free
**Problem:**
Currently, the model is loaded for each request, adding 30-40s overhead.
**Solution:**
Load model once at application startup and keep it in memory.
```python
from fastapi import FastAPI
import ollama
app = FastAPI()
# Load model at startup (runs once)
@app.on_event("startup")
async def load_model():
global model_client
model_client = ollama.Client()
# Warm up the model
model_client.generate(
model="phi3:mini",
prompt="test",
stream=False
)
print("Model loaded and ready!")
# Use pre-loaded model in endpoints
@app.post("/api/v1/summarize/stream")
async def summarize_stream(request: SummarizeRequest):
response = model_client.generate(
model="phi3:mini",
prompt=request.text,
stream=True
)
# ... stream response
```
**Expected Result:** 62s β 15-25s (first request), 10-15s (subsequent)
---
#### 1.3 Set Up Keep-Warm Service
**Impact:** Eliminates cold starts
**Effort:** 10 minutes
**Cost:** Free
**Problem:**
HF Space goes to sleep after 15 minutes, causing 10-20s cold start.
**Solution:**
Ping your space every 10 minutes to keep it awake.
**Option A: UptimeRobot (Recommended)**
1. Go to https://uptimerobot.com
2. Create free account
3. Add HTTP(s) monitor:
- URL: `https://colin730-summarizerapp.hf.space/`
- Interval: 10 minutes
4. Done!
**Option B: GitHub Actions**
Create `.github/workflows/keep-warm.yml`:
```yaml
name: Keep HF Space Warm
on:
schedule:
- cron: '*/10 * * * *' # Every 10 minutes
jobs:
ping:
runs-on: ubuntu-latest
steps:
- name: Ping Space
run: |
curl -f https://colin730-summarizerapp.hf.space/ || echo "Ping failed"
```
**Expected Result:** Eliminates 10-20s cold start delay
---
### Priority 2: Medium-term Solutions (This Week)
#### 2.1 Switch to Hugging Face Inference API
**Impact:** 70-80% faster
**Effort:** 2-3 hours
**Cost:** Free (with rate limits)
**Problem:**
Ollama is not optimized for CPU-only environments.
**Solution:**
Use HF's native transformers library with optimized models.
```python
from transformers import pipeline
from fastapi.responses import StreamingResponse
import json
# Load at startup (much faster than Ollama)
summarizer = pipeline(
"summarization",
model="facebook/bart-large-cnn", # or "sshleifer/distilbart-cnn-12-6" for speed
device=-1 # CPU
)
@app.post("/api/v1/summarize/stream")
async def summarize_stream(request: SummarizeRequest):
async def generate():
# Process in chunks for streaming effect
text = request.text
max_chunk_size = 1024
for i in range(0, len(text), max_chunk_size):
chunk = text[i:i + max_chunk_size]
result = summarizer(
chunk,
max_length=150,
min_length=30,
do_sample=False
)
summary_chunk = result[0]['summary_text']
# Stream as SSE
yield f"data: {json.dumps({'content': summary_chunk, 'done': False})}\n\n"
yield f"data: {json.dumps({'content': '', 'done': True})}\n\n"
return StreamingResponse(generate(), media_type="text/event-stream")
```
**Advantages:**
- Faster loading (optimized for CPU)
- Better caching
- Native HF integration
- Simpler deployment
**Expected Result:** 62s β 10-15s
---
#### 2.2 Implement Response Caching
**Impact:** Instant responses for repeated inputs
**Effort:** 1-2 hours
**Cost:** Free
```python
from functools import lru_cache
import hashlib
def get_cache_key(text: str) -> str:
return hashlib.md5(text.encode()).hexdigest()
# Simple in-memory cache
summary_cache = {}
@app.post("/api/v1/summarize/stream")
async def summarize_stream(request: SummarizeRequest):
cache_key = get_cache_key(request.text)
# Check cache first
if cache_key in summary_cache:
cached_summary = summary_cache[cache_key]
# Stream cached result
async def stream_cached():
for word in cached_summary.split():
yield f"data: {json.dumps({'content': word + ' ', 'done': False})}\n\n"
yield f"data: {json.dumps({'content': '', 'done': True})}\n\n"
return StreamingResponse(stream_cached(), media_type="text/event-stream")
# ... generate new summary and cache it
summary_cache[cache_key] = summary
```
**Expected Result:** Cached requests: 1-2s (instant)
---
### Priority 3: Long-term Solutions (Upgrade Path)
#### 3.1 Upgrade to Hugging Face Pro
**Impact:** 80-90% faster, eliminates all cold starts
**Effort:** 5 minutes
**Cost:** $9/month
**Benefits:**
- Persistent hardware (no cold starts)
- GPU access (10-20x faster inference)
- Always-on instance
- Better resource allocation
**Expected Result:** 62s β 3-5s consistently
---
#### 3.2 Migrate to Dedicated Infrastructure
**Impact:** Full control, optimal performance
**Effort:** 4-8 hours
**Cost:** $10-50/month
**Options:**
- **DigitalOcean GPU Droplet** ($10/month + GPU hours)
- **AWS Lambda + SageMaker** (Pay per use)
- **Railway.app** ($5-20/month)
- **Render.com** ($7-25/month)
**Advantages:**
- No cold starts
- GPU access
- Better monitoring
- Scalable
**Expected Result:** 62s β 2-5s consistently
---
#### 3.3 Use Managed AI APIs
**Impact:** Instant responses, no infrastructure management
**Effort:** 2-3 hours (API integration)
**Cost:** Pay per use (~$0.001 per summary)
**Options:**
**OpenAI GPT-3.5/4:**
```python
import openai
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[{
"role": "user",
"content": f"Summarize: {text}"
}],
stream=True
)
for chunk in response:
# Stream to client
```
- Response time: 1-3s
- Cost: ~$0.001-0.003 per summary
**Anthropic Claude:**
```python
import anthropic
client = anthropic.Client(api_key="...")
response = client.messages.create(
model="claude-3-haiku-20240307",
messages=[{"role": "user", "content": f"Summarize: {text}"}],
stream=True
)
```
- Response time: 1-2s
- Cost: ~$0.0005-0.002 per summary
**Google Gemini:**
- Free tier: 60 requests/minute
- Response time: 1-3s
- Cost: Free β $0.0005 per summary
**Expected Result:** 62s β 1-3s, zero maintenance
---
## π Performance Comparison
| Solution | Time | Cold Start | Cost | Effort | Recommendation |
|----------|------|------------|------|--------|----------------|
| **Current (llama3.2:1b + Ollama)** | 60-65s | Yes | Free | - | β Poor UX |
| Keep-Warm Service | 50-55s | No | Free | 10min | β Do first |
| Pre-load Model | 35-45s | Yes | Free | 30min | β Do first |
| Switch to Transformers | 8-12s | Minimal | Free | 2-3hrs | ββ Best free option |
| HF Pro + GPU | 3-5s | No | $9/mo | 5min | β
Best value |
| Managed API (OpenAI/Claude) | 1-3s | No | Pay/use | 2-3hrs | β
Best perf |
---
## π― Recommended Implementation Plan
### Phase 1: Immediate (Do Today) β‘
1. Set up UptimeRobot keep-warm (10 min)
2. Pre-load llama3.2 model at startup (30 min)
**Expected:** 60s β 35-40s (35% improvement)
### Phase 2: This Week π
1. **Replace Ollama with Transformers pipeline** (2-3 hrs) β BIGGEST IMPACT
2. Implement response caching (1-2 hrs)
**Expected:** 35s β 8-12s (additional 70% improvement)
### Phase 3: Future Consideration π
1. Evaluate HF Pro vs Managed APIs
2. Based on usage patterns and budget, choose:
- HF Pro if self-hosted control is important
- Managed API if cost-per-use works better
**Expected:** 8s β 2-5s (additional 60-75% improvement)
---
## π Next Steps
1. **Review this analysis** with the backend team
2. **Pick quick wins** from Phase 1 (can be done in <1 hour)
3. **Measure results** after each change
4. **Share metrics** so we can validate improvements
## π Success Metrics
- **Target:** < 10 seconds for first response
- **Ideal:** < 5 seconds for first response
- **Acceptable:** < 15 seconds with good UX feedback
---
## π Additional Notes
**Current Stack:**
- Hugging Face Spaces (Free Tier)
- Ollama (localhost:11434)
- CPU-only inference
- Model: **llama3.2:1b** (Good choice for speed!)
**Android App Status:**
- β
Working perfectly
- β
Streaming implementation is correct
- β
UI updates in real-time once data arrives
- The only issue is waiting for backend to start responding
---
**Document Version:** 1.0
**Date:** October 15, 2025
**Prepared for:** Backend Team - SummarizeAI App
**Contact:** Android Team
|