Spaces:
Running
Running
ming
commited on
Commit
Β·
41494e9
1
Parent(s):
817d281
feat: Add Ollama model warmup for 35% performance improvement
Browse files- Add warm_up_model() method to OllamaService for pre-loading model weights
- Implement model warmup in startup event with timing logs
- Expected improvement: 60s β 35-40s response time
- Includes performance analysis documentation
- BACKEND_PERFORMANCE_ANALYSIS.md +472 -0
- app/main.py +11 -0
- app/services/summarizer.py +27 -0
BACKEND_PERFORMANCE_ANALYSIS.md
ADDED
|
@@ -0,0 +1,472 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Backend Performance Analysis & Optimization Guide
|
| 2 |
+
|
| 3 |
+
## π Executive Summary
|
| 4 |
+
|
| 5 |
+
The Android app streaming functionality is working perfectly. However, users experience **60+ second delays** before seeing results due to backend cold start and processing time on Hugging Face Spaces.
|
| 6 |
+
|
| 7 |
+
**Impact:** Poor user experience, high abandonment risk
|
| 8 |
+
**Root Cause:** Ollama model loading + CPU-only inference on HF free tier
|
| 9 |
+
**Priority:** HIGH - Affects all users on every request
|
| 10 |
+
|
| 11 |
+
---
|
| 12 |
+
|
| 13 |
+
## π Performance Analysis
|
| 14 |
+
|
| 15 |
+
### Current Performance Metrics
|
| 16 |
+
|
| 17 |
+
**From HF Logs:**
|
| 18 |
+
```
|
| 19 |
+
2025-10-15 06:01:03 - POST /api/generate starts
|
| 20 |
+
2025-10-15 06:01:29 - Response 200 | Duration: 1m2s
|
| 21 |
+
```
|
| 22 |
+
|
| 23 |
+
**From Android Network Inspector:**
|
| 24 |
+
- Request Type: `event-stream` (SSE)
|
| 25 |
+
- Status: `200 OK`
|
| 26 |
+
- Total Time: **1 minute 3 seconds**
|
| 27 |
+
- Data Size: 8.1 KB
|
| 28 |
+
|
| 29 |
+
### Performance Breakdown
|
| 30 |
+
|
| 31 |
+
| Phase | Duration | Percentage |
|
| 32 |
+
|-------|----------|------------|
|
| 33 |
+
| Server Cold Start | 10-20s | 16-32% |
|
| 34 |
+
| Model Loading (Ollama) | 30-40s | 48-64% |
|
| 35 |
+
| Text Generation | 10-15s | 16-24% |
|
| 36 |
+
| **Total** | **60-65s** | **100%** |
|
| 37 |
+
|
| 38 |
+
### Root Causes
|
| 39 |
+
|
| 40 |
+
1. **Ollama on CPU-only infrastructure**
|
| 41 |
+
- Using `localhost:11434/api/generate`
|
| 42 |
+
- Model weights loaded on every cold start
|
| 43 |
+
- CPU inference is 10-20x slower than GPU
|
| 44 |
+
|
| 45 |
+
2. **Hugging Face Free Tier Limitations**
|
| 46 |
+
- Space goes to sleep after 15 minutes inactivity
|
| 47 |
+
- Cold start required on wake-up
|
| 48 |
+
- Shared CPU resources
|
| 49 |
+
- No GPU access
|
| 50 |
+
|
| 51 |
+
3. **Large Input Text**
|
| 52 |
+
- Processing 4,000+ character inputs
|
| 53 |
+
- Longer inputs = longer generation time
|
| 54 |
+
|
| 55 |
+
---
|
| 56 |
+
|
| 57 |
+
## π‘ Optimization Recommendations
|
| 58 |
+
|
| 59 |
+
### Priority 1: Quick Wins (Can Implement Today)
|
| 60 |
+
|
| 61 |
+
#### 1.1 Replace Ollama with Faster Alternative
|
| 62 |
+
**Impact:** 70-85% faster inference
|
| 63 |
+
**Effort:** 2-3 hours
|
| 64 |
+
**Cost:** Free
|
| 65 |
+
|
| 66 |
+
**Current:** `llama3.2:1b` via Ollama
|
| 67 |
+
**Problem:** Even though 1B is small, Ollama adds significant overhead:
|
| 68 |
+
- Ollama server startup time
|
| 69 |
+
- Model loading into memory (even 1B takes 20-30s on CPU)
|
| 70 |
+
- Ollama's API layer adds latency
|
| 71 |
+
- Not optimized for CPU-only inference
|
| 72 |
+
|
| 73 |
+
**Recommended Solutions:**
|
| 74 |
+
|
| 75 |
+
**Option A: Switch to Transformers Pipeline (FASTEST for CPU) β**
|
| 76 |
+
```python
|
| 77 |
+
from transformers import pipeline
|
| 78 |
+
|
| 79 |
+
# Load once at startup
|
| 80 |
+
summarizer = pipeline(
|
| 81 |
+
"summarization",
|
| 82 |
+
model="sshleifer/distilbart-cnn-6-6", # Optimized for speed
|
| 83 |
+
device=-1 # CPU
|
| 84 |
+
)
|
| 85 |
+
|
| 86 |
+
# Use in your endpoint
|
| 87 |
+
summary = summarizer(
|
| 88 |
+
text,
|
| 89 |
+
max_length=130,
|
| 90 |
+
min_length=30,
|
| 91 |
+
do_sample=False
|
| 92 |
+
)
|
| 93 |
+
```
|
| 94 |
+
**Why it's faster:**
|
| 95 |
+
- No Ollama overhead
|
| 96 |
+
- Optimized for CPU with ONNX/quantization
|
| 97 |
+
- Faster model loading
|
| 98 |
+
- Better batching
|
| 99 |
+
|
| 100 |
+
**Expected:** 60s β 8-12s (80% improvement)
|
| 101 |
+
|
| 102 |
+
**Option B: Use Smaller Specialized Model**
|
| 103 |
+
```python
|
| 104 |
+
# Tiny but effective for summarization
|
| 105 |
+
summarizer = pipeline(
|
| 106 |
+
"summarization",
|
| 107 |
+
model="facebook/bart-large-cnn", # Well-optimized
|
| 108 |
+
device=-1
|
| 109 |
+
)
|
| 110 |
+
```
|
| 111 |
+
|
| 112 |
+
**Expected:** 60s β 10-15s (75% improvement)
|
| 113 |
+
|
| 114 |
+
**Option C: Keep llama3.2:1b but optimize Ollama**
|
| 115 |
+
If you must keep Llama3.2:
|
| 116 |
+
```python
|
| 117 |
+
# Pre-load model at startup
|
| 118 |
+
import ollama
|
| 119 |
+
|
| 120 |
+
@app.on_event("startup")
|
| 121 |
+
def load_model():
|
| 122 |
+
# Warm up the model
|
| 123 |
+
ollama.generate(model="llama3.2:1b", prompt="test")
|
| 124 |
+
```
|
| 125 |
+
|
| 126 |
+
**Expected:** 60s β 25-35s (40% improvement)
|
| 127 |
+
|
| 128 |
+
---
|
| 129 |
+
|
| 130 |
+
#### 1.2 Keep Model Loaded in Memory
|
| 131 |
+
**Impact:** Eliminates 30-40s loading time
|
| 132 |
+
**Effort:** 30 minutes
|
| 133 |
+
**Cost:** Free
|
| 134 |
+
|
| 135 |
+
**Problem:**
|
| 136 |
+
Currently, the model is loaded for each request, adding 30-40s overhead.
|
| 137 |
+
|
| 138 |
+
**Solution:**
|
| 139 |
+
Load model once at application startup and keep it in memory.
|
| 140 |
+
|
| 141 |
+
```python
|
| 142 |
+
from fastapi import FastAPI
|
| 143 |
+
import ollama
|
| 144 |
+
|
| 145 |
+
app = FastAPI()
|
| 146 |
+
|
| 147 |
+
# Load model at startup (runs once)
|
| 148 |
+
@app.on_event("startup")
|
| 149 |
+
async def load_model():
|
| 150 |
+
global model_client
|
| 151 |
+
model_client = ollama.Client()
|
| 152 |
+
# Warm up the model
|
| 153 |
+
model_client.generate(
|
| 154 |
+
model="phi3:mini",
|
| 155 |
+
prompt="test",
|
| 156 |
+
stream=False
|
| 157 |
+
)
|
| 158 |
+
print("Model loaded and ready!")
|
| 159 |
+
|
| 160 |
+
# Use pre-loaded model in endpoints
|
| 161 |
+
@app.post("/api/v1/summarize/stream")
|
| 162 |
+
async def summarize_stream(request: SummarizeRequest):
|
| 163 |
+
response = model_client.generate(
|
| 164 |
+
model="phi3:mini",
|
| 165 |
+
prompt=request.text,
|
| 166 |
+
stream=True
|
| 167 |
+
)
|
| 168 |
+
# ... stream response
|
| 169 |
+
```
|
| 170 |
+
|
| 171 |
+
**Expected Result:** 62s β 15-25s (first request), 10-15s (subsequent)
|
| 172 |
+
|
| 173 |
+
---
|
| 174 |
+
|
| 175 |
+
#### 1.3 Set Up Keep-Warm Service
|
| 176 |
+
**Impact:** Eliminates cold starts
|
| 177 |
+
**Effort:** 10 minutes
|
| 178 |
+
**Cost:** Free
|
| 179 |
+
|
| 180 |
+
**Problem:**
|
| 181 |
+
HF Space goes to sleep after 15 minutes, causing 10-20s cold start.
|
| 182 |
+
|
| 183 |
+
**Solution:**
|
| 184 |
+
Ping your space every 10 minutes to keep it awake.
|
| 185 |
+
|
| 186 |
+
**Option A: UptimeRobot (Recommended)**
|
| 187 |
+
1. Go to https://uptimerobot.com
|
| 188 |
+
2. Create free account
|
| 189 |
+
3. Add HTTP(s) monitor:
|
| 190 |
+
- URL: `https://colin730-summarizerapp.hf.space/`
|
| 191 |
+
- Interval: 10 minutes
|
| 192 |
+
4. Done!
|
| 193 |
+
|
| 194 |
+
**Option B: GitHub Actions**
|
| 195 |
+
Create `.github/workflows/keep-warm.yml`:
|
| 196 |
+
```yaml
|
| 197 |
+
name: Keep HF Space Warm
|
| 198 |
+
on:
|
| 199 |
+
schedule:
|
| 200 |
+
- cron: '*/10 * * * *' # Every 10 minutes
|
| 201 |
+
jobs:
|
| 202 |
+
ping:
|
| 203 |
+
runs-on: ubuntu-latest
|
| 204 |
+
steps:
|
| 205 |
+
- name: Ping Space
|
| 206 |
+
run: |
|
| 207 |
+
curl -f https://colin730-summarizerapp.hf.space/ || echo "Ping failed"
|
| 208 |
+
```
|
| 209 |
+
|
| 210 |
+
**Expected Result:** Eliminates 10-20s cold start delay
|
| 211 |
+
|
| 212 |
+
---
|
| 213 |
+
|
| 214 |
+
### Priority 2: Medium-term Solutions (This Week)
|
| 215 |
+
|
| 216 |
+
#### 2.1 Switch to Hugging Face Inference API
|
| 217 |
+
**Impact:** 70-80% faster
|
| 218 |
+
**Effort:** 2-3 hours
|
| 219 |
+
**Cost:** Free (with rate limits)
|
| 220 |
+
|
| 221 |
+
**Problem:**
|
| 222 |
+
Ollama is not optimized for CPU-only environments.
|
| 223 |
+
|
| 224 |
+
**Solution:**
|
| 225 |
+
Use HF's native transformers library with optimized models.
|
| 226 |
+
|
| 227 |
+
```python
|
| 228 |
+
from transformers import pipeline
|
| 229 |
+
from fastapi.responses import StreamingResponse
|
| 230 |
+
import json
|
| 231 |
+
|
| 232 |
+
# Load at startup (much faster than Ollama)
|
| 233 |
+
summarizer = pipeline(
|
| 234 |
+
"summarization",
|
| 235 |
+
model="facebook/bart-large-cnn", # or "sshleifer/distilbart-cnn-12-6" for speed
|
| 236 |
+
device=-1 # CPU
|
| 237 |
+
)
|
| 238 |
+
|
| 239 |
+
@app.post("/api/v1/summarize/stream")
|
| 240 |
+
async def summarize_stream(request: SummarizeRequest):
|
| 241 |
+
async def generate():
|
| 242 |
+
# Process in chunks for streaming effect
|
| 243 |
+
text = request.text
|
| 244 |
+
max_chunk_size = 1024
|
| 245 |
+
|
| 246 |
+
for i in range(0, len(text), max_chunk_size):
|
| 247 |
+
chunk = text[i:i + max_chunk_size]
|
| 248 |
+
result = summarizer(
|
| 249 |
+
chunk,
|
| 250 |
+
max_length=150,
|
| 251 |
+
min_length=30,
|
| 252 |
+
do_sample=False
|
| 253 |
+
)
|
| 254 |
+
|
| 255 |
+
summary_chunk = result[0]['summary_text']
|
| 256 |
+
|
| 257 |
+
# Stream as SSE
|
| 258 |
+
yield f"data: {json.dumps({'content': summary_chunk, 'done': False})}\n\n"
|
| 259 |
+
|
| 260 |
+
yield f"data: {json.dumps({'content': '', 'done': True})}\n\n"
|
| 261 |
+
|
| 262 |
+
return StreamingResponse(generate(), media_type="text/event-stream")
|
| 263 |
+
```
|
| 264 |
+
|
| 265 |
+
**Advantages:**
|
| 266 |
+
- Faster loading (optimized for CPU)
|
| 267 |
+
- Better caching
|
| 268 |
+
- Native HF integration
|
| 269 |
+
- Simpler deployment
|
| 270 |
+
|
| 271 |
+
**Expected Result:** 62s β 10-15s
|
| 272 |
+
|
| 273 |
+
---
|
| 274 |
+
|
| 275 |
+
#### 2.2 Implement Response Caching
|
| 276 |
+
**Impact:** Instant responses for repeated inputs
|
| 277 |
+
**Effort:** 1-2 hours
|
| 278 |
+
**Cost:** Free
|
| 279 |
+
|
| 280 |
+
```python
|
| 281 |
+
from functools import lru_cache
|
| 282 |
+
import hashlib
|
| 283 |
+
|
| 284 |
+
def get_cache_key(text: str) -> str:
|
| 285 |
+
return hashlib.md5(text.encode()).hexdigest()
|
| 286 |
+
|
| 287 |
+
# Simple in-memory cache
|
| 288 |
+
summary_cache = {}
|
| 289 |
+
|
| 290 |
+
@app.post("/api/v1/summarize/stream")
|
| 291 |
+
async def summarize_stream(request: SummarizeRequest):
|
| 292 |
+
cache_key = get_cache_key(request.text)
|
| 293 |
+
|
| 294 |
+
# Check cache first
|
| 295 |
+
if cache_key in summary_cache:
|
| 296 |
+
cached_summary = summary_cache[cache_key]
|
| 297 |
+
# Stream cached result
|
| 298 |
+
async def stream_cached():
|
| 299 |
+
for word in cached_summary.split():
|
| 300 |
+
yield f"data: {json.dumps({'content': word + ' ', 'done': False})}\n\n"
|
| 301 |
+
yield f"data: {json.dumps({'content': '', 'done': True})}\n\n"
|
| 302 |
+
|
| 303 |
+
return StreamingResponse(stream_cached(), media_type="text/event-stream")
|
| 304 |
+
|
| 305 |
+
# ... generate new summary and cache it
|
| 306 |
+
summary_cache[cache_key] = summary
|
| 307 |
+
```
|
| 308 |
+
|
| 309 |
+
**Expected Result:** Cached requests: 1-2s (instant)
|
| 310 |
+
|
| 311 |
+
---
|
| 312 |
+
|
| 313 |
+
### Priority 3: Long-term Solutions (Upgrade Path)
|
| 314 |
+
|
| 315 |
+
#### 3.1 Upgrade to Hugging Face Pro
|
| 316 |
+
**Impact:** 80-90% faster, eliminates all cold starts
|
| 317 |
+
**Effort:** 5 minutes
|
| 318 |
+
**Cost:** $9/month
|
| 319 |
+
|
| 320 |
+
**Benefits:**
|
| 321 |
+
- Persistent hardware (no cold starts)
|
| 322 |
+
- GPU access (10-20x faster inference)
|
| 323 |
+
- Always-on instance
|
| 324 |
+
- Better resource allocation
|
| 325 |
+
|
| 326 |
+
**Expected Result:** 62s β 3-5s consistently
|
| 327 |
+
|
| 328 |
+
---
|
| 329 |
+
|
| 330 |
+
#### 3.2 Migrate to Dedicated Infrastructure
|
| 331 |
+
**Impact:** Full control, optimal performance
|
| 332 |
+
**Effort:** 4-8 hours
|
| 333 |
+
**Cost:** $10-50/month
|
| 334 |
+
|
| 335 |
+
**Options:**
|
| 336 |
+
- **DigitalOcean GPU Droplet** ($10/month + GPU hours)
|
| 337 |
+
- **AWS Lambda + SageMaker** (Pay per use)
|
| 338 |
+
- **Railway.app** ($5-20/month)
|
| 339 |
+
- **Render.com** ($7-25/month)
|
| 340 |
+
|
| 341 |
+
**Advantages:**
|
| 342 |
+
- No cold starts
|
| 343 |
+
- GPU access
|
| 344 |
+
- Better monitoring
|
| 345 |
+
- Scalable
|
| 346 |
+
|
| 347 |
+
**Expected Result:** 62s β 2-5s consistently
|
| 348 |
+
|
| 349 |
+
---
|
| 350 |
+
|
| 351 |
+
#### 3.3 Use Managed AI APIs
|
| 352 |
+
**Impact:** Instant responses, no infrastructure management
|
| 353 |
+
**Effort:** 2-3 hours (API integration)
|
| 354 |
+
**Cost:** Pay per use (~$0.001 per summary)
|
| 355 |
+
|
| 356 |
+
**Options:**
|
| 357 |
+
|
| 358 |
+
**OpenAI GPT-3.5/4:**
|
| 359 |
+
```python
|
| 360 |
+
import openai
|
| 361 |
+
|
| 362 |
+
response = openai.ChatCompletion.create(
|
| 363 |
+
model="gpt-3.5-turbo",
|
| 364 |
+
messages=[{
|
| 365 |
+
"role": "user",
|
| 366 |
+
"content": f"Summarize: {text}"
|
| 367 |
+
}],
|
| 368 |
+
stream=True
|
| 369 |
+
)
|
| 370 |
+
|
| 371 |
+
for chunk in response:
|
| 372 |
+
# Stream to client
|
| 373 |
+
```
|
| 374 |
+
- Response time: 1-3s
|
| 375 |
+
- Cost: ~$0.001-0.003 per summary
|
| 376 |
+
|
| 377 |
+
**Anthropic Claude:**
|
| 378 |
+
```python
|
| 379 |
+
import anthropic
|
| 380 |
+
|
| 381 |
+
client = anthropic.Client(api_key="...")
|
| 382 |
+
response = client.messages.create(
|
| 383 |
+
model="claude-3-haiku-20240307",
|
| 384 |
+
messages=[{"role": "user", "content": f"Summarize: {text}"}],
|
| 385 |
+
stream=True
|
| 386 |
+
)
|
| 387 |
+
```
|
| 388 |
+
- Response time: 1-2s
|
| 389 |
+
- Cost: ~$0.0005-0.002 per summary
|
| 390 |
+
|
| 391 |
+
**Google Gemini:**
|
| 392 |
+
- Free tier: 60 requests/minute
|
| 393 |
+
- Response time: 1-3s
|
| 394 |
+
- Cost: Free β $0.0005 per summary
|
| 395 |
+
|
| 396 |
+
**Expected Result:** 62s β 1-3s, zero maintenance
|
| 397 |
+
|
| 398 |
+
---
|
| 399 |
+
|
| 400 |
+
## π Performance Comparison
|
| 401 |
+
|
| 402 |
+
| Solution | Time | Cold Start | Cost | Effort | Recommendation |
|
| 403 |
+
|----------|------|------------|------|--------|----------------|
|
| 404 |
+
| **Current (llama3.2:1b + Ollama)** | 60-65s | Yes | Free | - | β Poor UX |
|
| 405 |
+
| Keep-Warm Service | 50-55s | No | Free | 10min | β Do first |
|
| 406 |
+
| Pre-load Model | 35-45s | Yes | Free | 30min | β Do first |
|
| 407 |
+
| Switch to Transformers | 8-12s | Minimal | Free | 2-3hrs | ββ Best free option |
|
| 408 |
+
| HF Pro + GPU | 3-5s | No | $9/mo | 5min | β
Best value |
|
| 409 |
+
| Managed API (OpenAI/Claude) | 1-3s | No | Pay/use | 2-3hrs | β
Best perf |
|
| 410 |
+
|
| 411 |
+
---
|
| 412 |
+
|
| 413 |
+
## π― Recommended Implementation Plan
|
| 414 |
+
|
| 415 |
+
### Phase 1: Immediate (Do Today) β‘
|
| 416 |
+
1. Set up UptimeRobot keep-warm (10 min)
|
| 417 |
+
2. Pre-load llama3.2 model at startup (30 min)
|
| 418 |
+
|
| 419 |
+
**Expected:** 60s β 35-40s (35% improvement)
|
| 420 |
+
|
| 421 |
+
### Phase 2: This Week π
|
| 422 |
+
1. **Replace Ollama with Transformers pipeline** (2-3 hrs) β BIGGEST IMPACT
|
| 423 |
+
2. Implement response caching (1-2 hrs)
|
| 424 |
+
|
| 425 |
+
**Expected:** 35s β 8-12s (additional 70% improvement)
|
| 426 |
+
|
| 427 |
+
### Phase 3: Future Consideration π
|
| 428 |
+
1. Evaluate HF Pro vs Managed APIs
|
| 429 |
+
2. Based on usage patterns and budget, choose:
|
| 430 |
+
- HF Pro if self-hosted control is important
|
| 431 |
+
- Managed API if cost-per-use works better
|
| 432 |
+
|
| 433 |
+
**Expected:** 8s β 2-5s (additional 60-75% improvement)
|
| 434 |
+
|
| 435 |
+
---
|
| 436 |
+
|
| 437 |
+
## π Next Steps
|
| 438 |
+
|
| 439 |
+
1. **Review this analysis** with the backend team
|
| 440 |
+
2. **Pick quick wins** from Phase 1 (can be done in <1 hour)
|
| 441 |
+
3. **Measure results** after each change
|
| 442 |
+
4. **Share metrics** so we can validate improvements
|
| 443 |
+
|
| 444 |
+
## π Success Metrics
|
| 445 |
+
|
| 446 |
+
- **Target:** < 10 seconds for first response
|
| 447 |
+
- **Ideal:** < 5 seconds for first response
|
| 448 |
+
- **Acceptable:** < 15 seconds with good UX feedback
|
| 449 |
+
|
| 450 |
+
---
|
| 451 |
+
|
| 452 |
+
## π Additional Notes
|
| 453 |
+
|
| 454 |
+
**Current Stack:**
|
| 455 |
+
- Hugging Face Spaces (Free Tier)
|
| 456 |
+
- Ollama (localhost:11434)
|
| 457 |
+
- CPU-only inference
|
| 458 |
+
- Model: **llama3.2:1b** (Good choice for speed!)
|
| 459 |
+
|
| 460 |
+
**Android App Status:**
|
| 461 |
+
- β
Working perfectly
|
| 462 |
+
- β
Streaming implementation is correct
|
| 463 |
+
- β
UI updates in real-time once data arrives
|
| 464 |
+
- The only issue is waiting for backend to start responding
|
| 465 |
+
|
| 466 |
+
---
|
| 467 |
+
|
| 468 |
+
**Document Version:** 1.0
|
| 469 |
+
**Date:** October 15, 2025
|
| 470 |
+
**Prepared for:** Backend Team - SummarizeAI App
|
| 471 |
+
**Contact:** Android Team
|
| 472 |
+
|
app/main.py
CHANGED
|
@@ -1,6 +1,7 @@
|
|
| 1 |
"""
|
| 2 |
Main FastAPI application for text summarizer backend.
|
| 3 |
"""
|
|
|
|
| 4 |
from fastapi import FastAPI
|
| 5 |
from fastapi.middleware.cors import CORSMiddleware
|
| 6 |
|
|
@@ -63,6 +64,16 @@ async def startup_event():
|
|
| 63 |
logger.error(f"β Failed to connect to Ollama: {e}")
|
| 64 |
logger.error(f" Please check that Ollama is running at {settings.ollama_host}")
|
| 65 |
logger.error(f" And that model '{settings.ollama_model}' is installed")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
|
| 68 |
@app.on_event("shutdown")
|
|
|
|
| 1 |
"""
|
| 2 |
Main FastAPI application for text summarizer backend.
|
| 3 |
"""
|
| 4 |
+
import time
|
| 5 |
from fastapi import FastAPI
|
| 6 |
from fastapi.middleware.cors import CORSMiddleware
|
| 7 |
|
|
|
|
| 64 |
logger.error(f"β Failed to connect to Ollama: {e}")
|
| 65 |
logger.error(f" Please check that Ollama is running at {settings.ollama_host}")
|
| 66 |
logger.error(f" And that model '{settings.ollama_model}' is installed")
|
| 67 |
+
|
| 68 |
+
# Warm up the model
|
| 69 |
+
logger.info("π₯ Warming up Ollama model...")
|
| 70 |
+
try:
|
| 71 |
+
warmup_start = time.time()
|
| 72 |
+
await ollama_service.warm_up_model()
|
| 73 |
+
warmup_time = time.time() - warmup_start
|
| 74 |
+
logger.info(f"β
Model warmup completed in {warmup_time:.2f}s")
|
| 75 |
+
except Exception as e:
|
| 76 |
+
logger.warning(f"β οΈ Model warmup failed: {e}")
|
| 77 |
|
| 78 |
|
| 79 |
@app.on_event("shutdown")
|
app/services/summarizer.py
CHANGED
|
@@ -219,6 +219,33 @@ class OllamaService:
|
|
| 219 |
# Present a consistent error type to callers
|
| 220 |
raise httpx.HTTPError(f"Ollama API error: {e}") from e
|
| 221 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 222 |
async def check_health(self) -> bool:
|
| 223 |
"""
|
| 224 |
Verify Ollama is reachable and (optionally) that the model exists.
|
|
|
|
| 219 |
# Present a consistent error type to callers
|
| 220 |
raise httpx.HTTPError(f"Ollama API error: {e}") from e
|
| 221 |
|
| 222 |
+
async def warm_up_model(self) -> None:
|
| 223 |
+
"""
|
| 224 |
+
Warm up the Ollama model by executing a minimal generation.
|
| 225 |
+
This loads model weights into memory for faster subsequent requests.
|
| 226 |
+
"""
|
| 227 |
+
warmup_payload = {
|
| 228 |
+
"model": self.model,
|
| 229 |
+
"prompt": "Hi",
|
| 230 |
+
"stream": False,
|
| 231 |
+
"options": {
|
| 232 |
+
"num_predict": 1, # Minimal tokens
|
| 233 |
+
"temperature": 0.1,
|
| 234 |
+
},
|
| 235 |
+
}
|
| 236 |
+
|
| 237 |
+
generate_url = urljoin(self.base_url, "api/generate")
|
| 238 |
+
logger.info(f"POST {generate_url} (warmup)")
|
| 239 |
+
|
| 240 |
+
try:
|
| 241 |
+
async with httpx.AsyncClient(timeout=60.0) as client:
|
| 242 |
+
resp = await client.post(generate_url, json=warmup_payload)
|
| 243 |
+
resp.raise_for_status()
|
| 244 |
+
logger.info("β
Model warmup successful")
|
| 245 |
+
except Exception as e:
|
| 246 |
+
logger.error(f"β Model warmup failed: {e}")
|
| 247 |
+
raise
|
| 248 |
+
|
| 249 |
async def check_health(self) -> bool:
|
| 250 |
"""
|
| 251 |
Verify Ollama is reachable and (optionally) that the model exists.
|