File size: 10,701 Bytes
a4bd75a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
#!/usr/bin/env python3
"""
FastAPI Wrapper for Audio-Enhanced Video Highlights
Converts your SmolVLM2 + Whisper system into a web API for Android apps
"""

from fastapi import FastAPI, UploadFile, File, HTTPException, BackgroundTasks
from fastapi.responses import FileResponse, JSONResponse
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
import os
import sys
import tempfile
import uuid
import json
import asyncio
from pathlib import Path
from typing import Optional
import logging

# Add src directory to path for imports
sys.path.append(str(Path(__file__).parent / "src"))

try:
    from audio_enhanced_highlights_final import AudioVisualAnalyzer, extract_frames_at_intervals, save_frame_at_time, create_highlights_video
except ImportError:
    print("❌ Cannot import audio_enhanced_highlights_final.py")
    sys.exit(1)

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# FastAPI app
app = FastAPI(
    title="SmolVLM2 Video Highlights API",
    description="Generate intelligent video highlights using SmolVLM2 + Whisper",
    version="1.0.0"
)

# Enable CORS for Android apps
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],  # In production, specify your Android app's domain
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# Request/Response models
class AnalysisRequest(BaseModel):
    interval: float = 20.0
    min_score: float = 6.5
    max_highlights: int = 3
    whisper_model: str = "base"
    timeout: int = 35

class AnalysisResponse(BaseModel):
    job_id: str
    status: str
    message: str

class JobStatus(BaseModel):
    job_id: str
    status: str  # "processing", "completed", "failed"
    progress: int  # 0-100
    message: str
    highlights_url: Optional[str] = None
    analysis_url: Optional[str] = None

# Global storage for jobs (in production, use Redis/database)
active_jobs = {}
completed_jobs = {}

# Create output directories
os.makedirs("outputs", exist_ok=True)
os.makedirs("temp", exist_ok=True)

@app.get("/")
async def root():
    return {
        "message": "SmolVLM2 Video Highlights API",
        "version": "1.0.0",
        "endpoints": {
            "upload": "/upload-video",
            "status": "/job-status/{job_id}",
            "download": "/download/{filename}"
        }
    }

@app.post("/upload-video", response_model=AnalysisResponse)
async def upload_video(
    background_tasks: BackgroundTasks,
    video: UploadFile = File(...),
    interval: float = 20.0,
    min_score: float = 6.5,
    max_highlights: int = 3,
    whisper_model: str = "base",
    timeout: int = 35
):
    """
    Upload a video and start processing highlights
    """
    # Validate file
    if not video.filename.lower().endswith(('.mp4', '.avi', '.mov', '.mkv')):
        raise HTTPException(status_code=400, detail="Only video files are supported")
    
    # Generate unique job ID
    job_id = str(uuid.uuid4())
    
    try:
        # Save uploaded video
        temp_video_path = f"temp/{job_id}_{video.filename}"
        with open(temp_video_path, "wb") as f:
            content = await video.read()
            f.write(content)
        
        # Store job info
        active_jobs[job_id] = {
            "status": "processing",
            "progress": 0,
            "message": "Video uploaded, starting analysis...",
            "video_path": temp_video_path,
            "settings": {
                "interval": interval,
                "min_score": min_score,
                "max_highlights": max_highlights,
                "whisper_model": whisper_model,
                "timeout": timeout
            }
        }
        
        # Start processing in background
        background_tasks.add_task(
            process_video_highlights,
            job_id,
            temp_video_path,
            interval,
            min_score,
            max_highlights,
            whisper_model,
            timeout
        )
        
        return AnalysisResponse(
            job_id=job_id,
            status="processing",
            message="Video uploaded successfully. Processing started."
        )
        
    except Exception as e:
        logger.error(f"Upload failed: {e}")
        raise HTTPException(status_code=500, detail=f"Upload failed: {str(e)}")

@app.get("/job-status/{job_id}", response_model=JobStatus)
async def get_job_status(job_id: str):
    """
    Get the status of a processing job
    """
    # Check active jobs
    if job_id in active_jobs:
        job = active_jobs[job_id]
        return JobStatus(
            job_id=job_id,
            status=job["status"],
            progress=job["progress"],
            message=job["message"]
        )
    
    # Check completed jobs
    if job_id in completed_jobs:
        job = completed_jobs[job_id]
        return JobStatus(
            job_id=job_id,
            status=job["status"],
            progress=100,
            message=job["message"],
            highlights_url=job.get("highlights_url"),
            analysis_url=job.get("analysis_url")
        )
    
    raise HTTPException(status_code=404, detail="Job not found")

@app.get("/download/{filename}")
async def download_file(filename: str):
    """
    Download generated files
    """
    file_path = f"outputs/{filename}"
    if not os.path.exists(file_path):
        raise HTTPException(status_code=404, detail="File not found")
    
    return FileResponse(
        file_path,
        media_type='application/octet-stream',
        filename=filename
    )

async def process_video_highlights(
    job_id: str,
    video_path: str,
    interval: float,
    min_score: float,
    max_highlights: int,
    whisper_model: str,
    timeout: int
):
    """
    Background task to process video highlights
    """
    try:
        # Update status
        active_jobs[job_id]["progress"] = 10
        active_jobs[job_id]["message"] = "Initializing AI models..."
        
        # Initialize analyzer
        analyzer = AudioVisualAnalyzer(
            whisper_model_size=whisper_model,
            timeout_seconds=timeout
        )
        
        active_jobs[job_id]["progress"] = 20
        active_jobs[job_id]["message"] = "Extracting video segments..."
        
        # Extract segments
        segments = extract_frames_at_intervals(video_path, interval)
        total_segments = len(segments)
        
        active_jobs[job_id]["progress"] = 30
        active_jobs[job_id]["message"] = f"Analyzing {total_segments} segments..."
        
        # Analyze segments
        analyzed_segments = []
        temp_frame_path = f"temp/{job_id}_frame.jpg"
        
        for i, segment in enumerate(segments):
            # Update progress
            progress = 30 + int((i / total_segments) * 50)  # 30-80%
            active_jobs[job_id]["progress"] = progress
            active_jobs[job_id]["message"] = f"Analyzing segment {i+1}/{total_segments}"
            
            # Save frame for visual analysis
            if save_frame_at_time(video_path, segment['start_time'], temp_frame_path):
                # Analyze segment
                analysis = analyzer.analyze_segment(video_path, segment, temp_frame_path)
                analyzed_segments.append(analysis)
        
        # Cleanup temp frame
        try:
            os.unlink(temp_frame_path)
        except:
            pass
        
        active_jobs[job_id]["progress"] = 85
        active_jobs[job_id]["message"] = "Selecting best highlights..."
        
        # Select best segments
        analyzed_segments.sort(key=lambda x: x['combined_score'], reverse=True)
        selected_segments = [s for s in analyzed_segments if s['combined_score'] >= min_score]
        selected_segments = selected_segments[:max_highlights]
        
        if not selected_segments:
            raise Exception(f"No segments met minimum score of {min_score}")
        
        active_jobs[job_id]["progress"] = 90
        active_jobs[job_id]["message"] = f"Creating highlights video with {len(selected_segments)} segments..."
        
        # Create output filenames
        highlights_filename = f"{job_id}_highlights.mp4"
        analysis_filename = f"{job_id}_analysis.json"
        highlights_path = f"outputs/{highlights_filename}"
        analysis_path = f"outputs/{analysis_filename}"
        
        # Create highlights video
        success = create_highlights_video(video_path, selected_segments, highlights_path)
        
        if not success:
            raise Exception("Failed to create highlights video")
        
        # Save analysis
        analysis_data = {
            'job_id': job_id,
            'input_video': video_path,
            'output_video': highlights_path,
            'settings': {
                'interval': interval,
                'min_score': min_score,
                'max_highlights': max_highlights,
                'whisper_model': whisper_model,
                'timeout': timeout
            },
            'segments': analyzed_segments,
            'selected_segments': selected_segments,
            'summary': {
                'total_segments': len(analyzed_segments),
                'selected_segments': len(selected_segments),
                'processing_time': "Completed successfully"
            }
        }
        
        with open(analysis_path, 'w') as f:
            json.dump(analysis_data, f, indent=2)
        
        # Mark as completed
        completed_jobs[job_id] = {
            "status": "completed",
            "message": f"Successfully created highlights with {len(selected_segments)} segments",
            "highlights_url": f"/download/{highlights_filename}",
            "analysis_url": f"/download/{analysis_filename}",
            "summary": analysis_data['summary']
        }
        
        # Remove from active jobs
        del active_jobs[job_id]
        
        # Cleanup temp video
        try:
            os.unlink(video_path)
        except:
            pass
        
    except Exception as e:
        logger.error(f"Processing failed for job {job_id}: {e}")
        
        # Mark as failed
        completed_jobs[job_id] = {
            "status": "failed",
            "message": f"Processing failed: {str(e)}",
            "highlights_url": None,
            "analysis_url": None
        }
        
        # Remove from active jobs
        if job_id in active_jobs:
            del active_jobs[job_id]
        
        # Cleanup
        try:
            os.unlink(video_path)
        except:
            pass

if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=8000)