Commit
Β·
a4bd75a
1
Parent(s):
8a9a9e9
π Deploy SmolVLM2 Video Highlights API
Browse files- FastAPI server with background processing
- SmolVLM2 + Whisper AI integration
- Docker deployment configuration
- Complete video highlights generation system
- REST API for mobile app integration
- Dockerfile +33 -0
- README.md +76 -6
- audio_enhanced_highlights_final.py +564 -0
- fastapi_requirements.txt +9 -0
- highlights_api.py +345 -0
- requirements.txt +32 -0
- src/smolvlm2_handler.py +281 -0
Dockerfile
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Use Python 3.9 slim image
|
| 2 |
+
FROM python:3.9-slim
|
| 3 |
+
|
| 4 |
+
# Set working directory
|
| 5 |
+
WORKDIR /app
|
| 6 |
+
|
| 7 |
+
# Install system dependencies
|
| 8 |
+
RUN apt-get update && apt-get install -y \
|
| 9 |
+
ffmpeg \
|
| 10 |
+
git \
|
| 11 |
+
&& rm -rf /var/lib/apt/lists/*
|
| 12 |
+
|
| 13 |
+
# Copy requirements first for better caching
|
| 14 |
+
COPY requirements.txt fastapi_requirements.txt ./
|
| 15 |
+
RUN pip install --no-cache-dir -r requirements.txt && \
|
| 16 |
+
pip install --no-cache-dir -r fastapi_requirements.txt
|
| 17 |
+
|
| 18 |
+
# Copy application code
|
| 19 |
+
COPY . .
|
| 20 |
+
|
| 21 |
+
# Create necessary directories
|
| 22 |
+
RUN mkdir -p outputs temp samples src
|
| 23 |
+
|
| 24 |
+
# Expose port
|
| 25 |
+
EXPOSE 7860
|
| 26 |
+
|
| 27 |
+
# Set environment variables
|
| 28 |
+
ENV PYTHONPATH=/app
|
| 29 |
+
ENV GRADIO_SERVER_NAME=0.0.0.0
|
| 30 |
+
ENV GRADIO_SERVER_PORT=7860
|
| 31 |
+
|
| 32 |
+
# Run the FastAPI app
|
| 33 |
+
CMD ["python", "-m", "uvicorn", "highlights_api:app", "--host", "0.0.0.0", "--port", "7860"]
|
README.md
CHANGED
|
@@ -1,11 +1,81 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: docker
|
| 7 |
pinned: false
|
| 8 |
-
|
|
|
|
| 9 |
---
|
| 10 |
|
| 11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
title: SmolVLM2 Video Highlights
|
| 3 |
+
emoji: π¬
|
| 4 |
+
colorFrom: blue
|
| 5 |
+
colorTo: purple
|
| 6 |
sdk: docker
|
| 7 |
pinned: false
|
| 8 |
+
license: apache-2.0
|
| 9 |
+
app_port: 7860
|
| 10 |
---
|
| 11 |
|
| 12 |
+
# π¬ SmolVLM2 Video Highlights API
|
| 13 |
+
|
| 14 |
+
**Generate intelligent video highlights using SmolVLM2 + Whisper AI**
|
| 15 |
+
|
| 16 |
+
This is a FastAPI service that combines visual analysis (SmolVLM2) with audio transcription (Whisper) to automatically create highlight videos from longer content.
|
| 17 |
+
|
| 18 |
+
## π Features
|
| 19 |
+
|
| 20 |
+
- **Visual Analysis**: SmolVLM2-2.2B-Instruct analyzes video frames for interesting content
|
| 21 |
+
- **Audio Processing**: Whisper transcribes speech in 99+ languages
|
| 22 |
+
- **Smart Scoring**: Combines visual and audio analysis for intelligent highlights
|
| 23 |
+
- **REST API**: Upload videos and download processed highlights
|
| 24 |
+
- **Background Processing**: Non-blocking video processing with job tracking
|
| 25 |
+
|
| 26 |
+
## π API Endpoints
|
| 27 |
+
|
| 28 |
+
- `POST /upload-video` - Upload video for processing
|
| 29 |
+
- `GET /job-status/{job_id}` - Check processing status
|
| 30 |
+
- `GET /download/{filename}` - Download generated highlights
|
| 31 |
+
- `GET /docs` - Interactive API documentation
|
| 32 |
+
|
| 33 |
+
## π± Usage
|
| 34 |
+
|
| 35 |
+
### Via API
|
| 36 |
+
```bash
|
| 37 |
+
# Upload video
|
| 38 |
+
curl -X POST -F "video=@your_video.mp4" https://avinashhuggingface108-smolvlm2-video-highlights.hf.space/upload-video
|
| 39 |
+
|
| 40 |
+
# Check status
|
| 41 |
+
curl https://avinashhuggingface108-smolvlm2-video-highlights.hf.space/job-status/YOUR_JOB_ID
|
| 42 |
+
|
| 43 |
+
# Download highlights
|
| 44 |
+
curl -O https://avinashhuggingface108-smolvlm2-video-highlights.hf.space/download/FILENAME.mp4
|
| 45 |
+
```
|
| 46 |
+
|
| 47 |
+
### Via Android App
|
| 48 |
+
Use the provided Android client code to integrate with your mobile app.
|
| 49 |
+
|
| 50 |
+
## βοΈ Configuration
|
| 51 |
+
|
| 52 |
+
Default settings:
|
| 53 |
+
- **Interval**: 20 seconds (analyze every 20s)
|
| 54 |
+
- **Min Score**: 6.5 (quality threshold)
|
| 55 |
+
- **Max Highlights**: 3 (maximum highlight segments)
|
| 56 |
+
- **Whisper Model**: base (accuracy vs speed)
|
| 57 |
+
- **Timeout**: 35 seconds per segment
|
| 58 |
+
|
| 59 |
+
## π οΈ Technology Stack
|
| 60 |
+
|
| 61 |
+
- **SmolVLM2-2.2B-Instruct**: Vision-language model for visual content analysis
|
| 62 |
+
- **OpenAI Whisper**: Speech-to-text in 99+ languages
|
| 63 |
+
- **FastAPI**: Modern web framework for APIs
|
| 64 |
+
- **FFmpeg**: Video processing and manipulation
|
| 65 |
+
- **PyTorch**: Deep learning framework with MPS acceleration
|
| 66 |
+
|
| 67 |
+
## π― Perfect For
|
| 68 |
+
|
| 69 |
+
- Social media content creators
|
| 70 |
+
- Educational video processing
|
| 71 |
+
- Meeting/lecture summarization
|
| 72 |
+
- Sports highlight generation
|
| 73 |
+
- Entertainment content curation
|
| 74 |
+
|
| 75 |
+
## οΏ½οΏ½ License
|
| 76 |
+
|
| 77 |
+
Apache 2.0 - Free for commercial and personal use
|
| 78 |
+
|
| 79 |
+
## π€ Contributing
|
| 80 |
+
|
| 81 |
+
Built with β€οΈ using Hugging Face Transformers and open-source AI models.
|
audio_enhanced_highlights_final.py
ADDED
|
@@ -0,0 +1,564 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
Audio-Enhanced Video Highlights Generator
|
| 4 |
+
Combines SmolVLM2 visual analysis with Whisper audio transcription
|
| 5 |
+
Supports 99+ languages including Telugu, Hindi, English
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
import os
|
| 9 |
+
import sys
|
| 10 |
+
import cv2
|
| 11 |
+
import argparse
|
| 12 |
+
import json
|
| 13 |
+
import subprocess
|
| 14 |
+
import threading
|
| 15 |
+
import time
|
| 16 |
+
import tempfile
|
| 17 |
+
from pathlib import Path
|
| 18 |
+
from PIL import Image
|
| 19 |
+
from typing import List, Dict, Optional
|
| 20 |
+
import logging
|
| 21 |
+
|
| 22 |
+
# Add src directory to path for imports
|
| 23 |
+
sys.path.append(str(Path(__file__).parent / "src"))
|
| 24 |
+
|
| 25 |
+
try:
|
| 26 |
+
from src.smolvlm2_handler import SmolVLM2Handler
|
| 27 |
+
except ImportError:
|
| 28 |
+
print("β SmolVLM2Handler not found. Make sure to install dependencies first.")
|
| 29 |
+
sys.exit(1)
|
| 30 |
+
|
| 31 |
+
try:
|
| 32 |
+
import whisper
|
| 33 |
+
WHISPER_AVAILABLE = True
|
| 34 |
+
print("β
Whisper available for audio transcription")
|
| 35 |
+
except ImportError:
|
| 36 |
+
WHISPER_AVAILABLE = False
|
| 37 |
+
print("β Whisper not available. Install with: pip install openai-whisper")
|
| 38 |
+
sys.exit(1)
|
| 39 |
+
|
| 40 |
+
logging.basicConfig(level=logging.INFO)
|
| 41 |
+
logger = logging.getLogger(__name__)
|
| 42 |
+
|
| 43 |
+
class AudioVisualAnalyzer:
|
| 44 |
+
"""Comprehensive analyzer combining visual and audio analysis"""
|
| 45 |
+
|
| 46 |
+
def __init__(self, whisper_model_size="base", timeout_seconds=30):
|
| 47 |
+
"""Initialize with SmolVLM2 and Whisper models"""
|
| 48 |
+
print("π§ Initializing Audio-Visual Analyzer...")
|
| 49 |
+
|
| 50 |
+
# Initialize SmolVLM2 for visual analysis
|
| 51 |
+
self.vlm_handler = SmolVLM2Handler()
|
| 52 |
+
self.timeout_seconds = timeout_seconds
|
| 53 |
+
|
| 54 |
+
# Initialize Whisper for audio analysis
|
| 55 |
+
if WHISPER_AVAILABLE:
|
| 56 |
+
print(f"π₯ Loading Whisper model ({whisper_model_size})...")
|
| 57 |
+
self.whisper_model = whisper.load_model(whisper_model_size)
|
| 58 |
+
print("β
Whisper model loaded successfully")
|
| 59 |
+
else:
|
| 60 |
+
self.whisper_model = None
|
| 61 |
+
print("β οΈ Whisper not available - audio analysis disabled")
|
| 62 |
+
|
| 63 |
+
def extract_audio_segments(self, video_path: str, segments: List[Dict]) -> List[str]:
|
| 64 |
+
"""Extract audio for specific video segments"""
|
| 65 |
+
audio_files = []
|
| 66 |
+
temp_dir = tempfile.mkdtemp()
|
| 67 |
+
|
| 68 |
+
for i, segment in enumerate(segments):
|
| 69 |
+
start_time = segment['start_time']
|
| 70 |
+
duration = segment['duration']
|
| 71 |
+
|
| 72 |
+
audio_path = os.path.join(temp_dir, f"segment_{i}.wav")
|
| 73 |
+
|
| 74 |
+
# Extract audio segment using FFmpeg
|
| 75 |
+
cmd = [
|
| 76 |
+
'ffmpeg', '-i', video_path,
|
| 77 |
+
'-ss', str(start_time),
|
| 78 |
+
'-t', str(duration),
|
| 79 |
+
'-vn', # No video
|
| 80 |
+
'-acodec', 'pcm_s16le', # Uncompressed audio
|
| 81 |
+
'-ar', '16000', # 16kHz sample rate for Whisper
|
| 82 |
+
'-ac', '1', # Mono
|
| 83 |
+
'-f', 'wav', # Force WAV format
|
| 84 |
+
'-y', # Overwrite
|
| 85 |
+
audio_path
|
| 86 |
+
]
|
| 87 |
+
|
| 88 |
+
try:
|
| 89 |
+
result = subprocess.run(cmd, check=True, capture_output=True, text=True)
|
| 90 |
+
if os.path.exists(audio_path) and os.path.getsize(audio_path) > 0:
|
| 91 |
+
audio_files.append(audio_path)
|
| 92 |
+
logger.info(f"π Extracted audio segment {i+1}: {duration:.1f}s")
|
| 93 |
+
else:
|
| 94 |
+
logger.warning(f"β οΈ Audio segment {i+1} is empty or missing")
|
| 95 |
+
audio_files.append(None)
|
| 96 |
+
except subprocess.CalledProcessError as e:
|
| 97 |
+
logger.warning(f"β οΈ No audio stream in segment {i+1} (this is normal for silent videos)")
|
| 98 |
+
audio_files.append(None)
|
| 99 |
+
|
| 100 |
+
return audio_files
|
| 101 |
+
|
| 102 |
+
def transcribe_audio_segment(self, audio_path: str) -> Dict:
|
| 103 |
+
"""Transcribe audio segment with Whisper"""
|
| 104 |
+
if not WHISPER_AVAILABLE or not audio_path or not os.path.exists(audio_path):
|
| 105 |
+
return {"text": "", "language": "unknown", "confidence": 0.0}
|
| 106 |
+
|
| 107 |
+
try:
|
| 108 |
+
result = self.whisper_model.transcribe(
|
| 109 |
+
audio_path,
|
| 110 |
+
language=None, # Auto-detect language
|
| 111 |
+
task="transcribe"
|
| 112 |
+
)
|
| 113 |
+
|
| 114 |
+
return {
|
| 115 |
+
"text": result.get("text", "").strip(),
|
| 116 |
+
"language": result.get("language", "unknown"),
|
| 117 |
+
"confidence": 1.0 # Whisper doesn't provide confidence scores
|
| 118 |
+
}
|
| 119 |
+
except Exception as e:
|
| 120 |
+
logger.error(f"β Audio transcription failed: {e}")
|
| 121 |
+
return {"text": "", "language": "unknown", "confidence": 0.0}
|
| 122 |
+
|
| 123 |
+
def analyze_visual_content(self, frame_path: str) -> Dict:
|
| 124 |
+
"""Analyze visual content using SmolVLM2 with robust error handling"""
|
| 125 |
+
max_retries = 2
|
| 126 |
+
retry_count = 0
|
| 127 |
+
|
| 128 |
+
while retry_count < max_retries:
|
| 129 |
+
try:
|
| 130 |
+
def generate_with_timeout():
|
| 131 |
+
prompt = ("Analyze this video frame for interesting, engaging, or highlight-worthy content. "
|
| 132 |
+
"Rate the excitement/interest level from 1-10 and explain what makes it noteworthy. "
|
| 133 |
+
"Focus on action, emotion, important moments, or visually striking elements.")
|
| 134 |
+
return self.vlm_handler.generate_response(frame_path, prompt)
|
| 135 |
+
|
| 136 |
+
# Run with timeout protection
|
| 137 |
+
thread_result = [None]
|
| 138 |
+
exception_result = [None]
|
| 139 |
+
|
| 140 |
+
def target():
|
| 141 |
+
try:
|
| 142 |
+
thread_result[0] = generate_with_timeout()
|
| 143 |
+
except Exception as e:
|
| 144 |
+
exception_result[0] = e
|
| 145 |
+
|
| 146 |
+
thread = threading.Thread(target=target)
|
| 147 |
+
thread.daemon = True
|
| 148 |
+
thread.start()
|
| 149 |
+
thread.join(self.timeout_seconds)
|
| 150 |
+
|
| 151 |
+
if thread.is_alive():
|
| 152 |
+
logger.warning(f"β° Visual analysis timed out after {self.timeout_seconds}s (attempt {retry_count + 1})")
|
| 153 |
+
retry_count += 1
|
| 154 |
+
if retry_count >= max_retries:
|
| 155 |
+
return {"description": "Analysis timed out after multiple attempts", "score": 6.0}
|
| 156 |
+
continue
|
| 157 |
+
|
| 158 |
+
if exception_result[0]:
|
| 159 |
+
error_msg = str(exception_result[0])
|
| 160 |
+
if "probability tensor" in error_msg or "inf" in error_msg or "nan" in error_msg:
|
| 161 |
+
logger.warning(f"β οΈ Model inference error, retrying (attempt {retry_count + 1}): {error_msg}")
|
| 162 |
+
retry_count += 1
|
| 163 |
+
if retry_count >= max_retries:
|
| 164 |
+
return {"description": "Model inference failed after retries", "score": 6.0}
|
| 165 |
+
continue
|
| 166 |
+
else:
|
| 167 |
+
raise exception_result[0]
|
| 168 |
+
|
| 169 |
+
response = thread_result[0]
|
| 170 |
+
if not response or len(response.strip()) == 0:
|
| 171 |
+
logger.warning(f"β οΈ Empty response, retrying (attempt {retry_count + 1})")
|
| 172 |
+
retry_count += 1
|
| 173 |
+
if retry_count >= max_retries:
|
| 174 |
+
return {"description": "No meaningful response after retries", "score": 6.0}
|
| 175 |
+
continue
|
| 176 |
+
|
| 177 |
+
# Extract score from response
|
| 178 |
+
score = self.extract_score_from_text(response)
|
| 179 |
+
return {"description": response, "score": score}
|
| 180 |
+
|
| 181 |
+
except Exception as e:
|
| 182 |
+
error_msg = str(e)
|
| 183 |
+
logger.warning(f"β οΈ Visual analysis error (attempt {retry_count + 1}): {error_msg}")
|
| 184 |
+
retry_count += 1
|
| 185 |
+
if retry_count >= max_retries:
|
| 186 |
+
return {"description": f"Analysis failed after {max_retries} attempts: {error_msg}", "score": 6.0}
|
| 187 |
+
|
| 188 |
+
# Fallback if all retries failed
|
| 189 |
+
return {"description": "Analysis failed after all retry attempts", "score": 6.0}
|
| 190 |
+
|
| 191 |
+
def extract_score_from_text(self, text: str) -> float:
|
| 192 |
+
"""Extract numeric score from analysis text"""
|
| 193 |
+
import re
|
| 194 |
+
|
| 195 |
+
# Look for patterns like "8/10", "score: 7", "rate: 6.5", etc.
|
| 196 |
+
patterns = [
|
| 197 |
+
r'(\d+(?:\.\d+)?)\s*/\s*10', # "8/10" or "7.5/10"
|
| 198 |
+
r'(?:score|rating|rate)(?:\s*[:=]\s*)(\d+(?:\.\d+)?)', # "score: 8" or "rating=7.5"
|
| 199 |
+
r'(\d+(?:\.\d+)?)\s*(?:out of|/)\s*10', # "8 out of 10"
|
| 200 |
+
r'(?:^|\s)(\d+(?:\.\d+)?)(?:\s*[/]\s*10)?(?:\s|$)', # Just numbers
|
| 201 |
+
]
|
| 202 |
+
|
| 203 |
+
for pattern in patterns:
|
| 204 |
+
matches = re.findall(pattern, text.lower())
|
| 205 |
+
if matches:
|
| 206 |
+
try:
|
| 207 |
+
score = float(matches[0])
|
| 208 |
+
return min(max(score, 1.0), 10.0) # Clamp between 1-10
|
| 209 |
+
except ValueError:
|
| 210 |
+
continue
|
| 211 |
+
|
| 212 |
+
return 6.0 # Default score if no pattern found
|
| 213 |
+
|
| 214 |
+
def calculate_combined_score(self, visual_score: float, audio_text: str, audio_lang: str) -> float:
|
| 215 |
+
"""Calculate combined score from visual and audio analysis"""
|
| 216 |
+
# Start with visual score
|
| 217 |
+
combined_score = visual_score
|
| 218 |
+
|
| 219 |
+
# Audio content scoring
|
| 220 |
+
if audio_text:
|
| 221 |
+
audio_bonus = 0.0
|
| 222 |
+
text_lower = audio_text.lower()
|
| 223 |
+
|
| 224 |
+
# Positive indicators
|
| 225 |
+
excitement_words = ['amazing', 'incredible', 'wow', 'fantastic', 'awesome', 'perfect', 'excellent']
|
| 226 |
+
action_words = ['goal', 'win', 'victory', 'success', 'breakthrough', 'achievement']
|
| 227 |
+
emotion_words = ['happy', 'excited', 'thrilled', 'surprised', 'shocked', 'love']
|
| 228 |
+
|
| 229 |
+
# Telugu positive indicators (basic)
|
| 230 |
+
telugu_positive = ['ΰ°
ΰ°¦ΰ±ΰ°ΰ±ΰ°€ΰ°', 'ΰ°ΰ°Ύΰ°²ΰ°Ύ ΰ°¬ΰ°Ύΰ°ΰ±ΰ°ΰ°¦ΰ°Ώ', 'ΰ°΅ΰ°Ύΰ°΅ΰ±', 'ΰ°Έΰ±ΰ°ͺΰ°°ΰ±']
|
| 231 |
+
|
| 232 |
+
# Count positive indicators
|
| 233 |
+
for word_list in [excitement_words, action_words, emotion_words, telugu_positive]:
|
| 234 |
+
for word in word_list:
|
| 235 |
+
if word in text_lower:
|
| 236 |
+
audio_bonus += 0.5
|
| 237 |
+
|
| 238 |
+
# Length bonus for substantial content
|
| 239 |
+
if len(audio_text) > 50:
|
| 240 |
+
audio_bonus += 0.3
|
| 241 |
+
elif len(audio_text) > 20:
|
| 242 |
+
audio_bonus += 0.1
|
| 243 |
+
|
| 244 |
+
# Language diversity bonus
|
| 245 |
+
if audio_lang in ['te', 'telugu']: # Telugu content
|
| 246 |
+
audio_bonus += 0.2
|
| 247 |
+
elif audio_lang in ['hi', 'hindi']: # Hindi content
|
| 248 |
+
audio_bonus += 0.2
|
| 249 |
+
|
| 250 |
+
combined_score += audio_bonus
|
| 251 |
+
|
| 252 |
+
# Clamp final score
|
| 253 |
+
return min(max(combined_score, 1.0), 10.0)
|
| 254 |
+
|
| 255 |
+
def analyze_segment(self, video_path: str, segment: Dict, temp_frame_path: str) -> Dict:
|
| 256 |
+
"""Analyze a single video segment with both visual and audio"""
|
| 257 |
+
start_time = segment['start_time']
|
| 258 |
+
duration = segment['duration']
|
| 259 |
+
|
| 260 |
+
logger.info(f"π Analyzing segment at {start_time:.1f}s ({duration:.1f}s duration)")
|
| 261 |
+
|
| 262 |
+
# Visual analysis
|
| 263 |
+
visual_analysis = self.analyze_visual_content(temp_frame_path)
|
| 264 |
+
|
| 265 |
+
# Audio analysis
|
| 266 |
+
audio_files = self.extract_audio_segments(video_path, [segment])
|
| 267 |
+
audio_analysis = {"text": "", "language": "unknown", "confidence": 0.0}
|
| 268 |
+
|
| 269 |
+
if audio_files and audio_files[0]:
|
| 270 |
+
audio_analysis = self.transcribe_audio_segment(audio_files[0])
|
| 271 |
+
# Cleanup temporary audio file
|
| 272 |
+
try:
|
| 273 |
+
os.unlink(audio_files[0])
|
| 274 |
+
except:
|
| 275 |
+
pass
|
| 276 |
+
|
| 277 |
+
# Combined scoring
|
| 278 |
+
combined_score = self.calculate_combined_score(
|
| 279 |
+
visual_analysis['score'],
|
| 280 |
+
audio_analysis['text'],
|
| 281 |
+
audio_analysis['language']
|
| 282 |
+
)
|
| 283 |
+
|
| 284 |
+
return {
|
| 285 |
+
'start_time': start_time,
|
| 286 |
+
'duration': duration,
|
| 287 |
+
'visual_score': visual_analysis['score'],
|
| 288 |
+
'visual_description': visual_analysis['description'],
|
| 289 |
+
'audio_text': audio_analysis['text'],
|
| 290 |
+
'audio_language': audio_analysis['language'],
|
| 291 |
+
'combined_score': combined_score,
|
| 292 |
+
'selected': False
|
| 293 |
+
}
|
| 294 |
+
|
| 295 |
+
def extract_frames_at_intervals(video_path: str, interval_seconds: float = 10.0) -> List[Dict]:
|
| 296 |
+
"""Extract frames at regular intervals from video"""
|
| 297 |
+
cap = cv2.VideoCapture(video_path)
|
| 298 |
+
if not cap.isOpened():
|
| 299 |
+
raise ValueError(f"Cannot open video file: {video_path}")
|
| 300 |
+
|
| 301 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 302 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 303 |
+
duration = total_frames / fps
|
| 304 |
+
|
| 305 |
+
logger.info(f"πΉ Video: {duration:.1f}s, {fps:.1f} FPS, {total_frames} frames")
|
| 306 |
+
|
| 307 |
+
segments = []
|
| 308 |
+
current_time = 0
|
| 309 |
+
|
| 310 |
+
while current_time < duration:
|
| 311 |
+
segment_duration = min(interval_seconds, duration - current_time)
|
| 312 |
+
segments.append({
|
| 313 |
+
'start_time': current_time,
|
| 314 |
+
'duration': segment_duration,
|
| 315 |
+
'frame_number': int(current_time * fps)
|
| 316 |
+
})
|
| 317 |
+
current_time += interval_seconds
|
| 318 |
+
|
| 319 |
+
cap.release()
|
| 320 |
+
return segments
|
| 321 |
+
|
| 322 |
+
def save_frame_at_time(video_path: str, time_seconds: float, output_path: str) -> bool:
|
| 323 |
+
"""Save a frame at specific time with robust frame extraction"""
|
| 324 |
+
cap = cv2.VideoCapture(video_path)
|
| 325 |
+
if not cap.isOpened():
|
| 326 |
+
return False
|
| 327 |
+
|
| 328 |
+
try:
|
| 329 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 330 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 331 |
+
frame_number = int(time_seconds * fps)
|
| 332 |
+
|
| 333 |
+
# Ensure frame number is within valid range
|
| 334 |
+
frame_number = min(frame_number, total_frames - 1)
|
| 335 |
+
frame_number = max(frame_number, 0)
|
| 336 |
+
|
| 337 |
+
# Try to extract frame with fallback options
|
| 338 |
+
for attempt in range(3):
|
| 339 |
+
try:
|
| 340 |
+
# Try exact frame first
|
| 341 |
+
test_frame = frame_number + attempt
|
| 342 |
+
if test_frame >= total_frames:
|
| 343 |
+
test_frame = frame_number - attempt
|
| 344 |
+
if test_frame < 0:
|
| 345 |
+
test_frame = frame_number
|
| 346 |
+
|
| 347 |
+
cap.set(cv2.CAP_PROP_POS_FRAMES, test_frame)
|
| 348 |
+
ret, frame = cap.read()
|
| 349 |
+
|
| 350 |
+
if ret and frame is not None and frame.size > 0:
|
| 351 |
+
# Validate frame data
|
| 352 |
+
if len(frame.shape) == 3 and frame.shape[2] == 3: # Valid color frame
|
| 353 |
+
success = cv2.imwrite(output_path, frame)
|
| 354 |
+
if success:
|
| 355 |
+
cap.release()
|
| 356 |
+
return True
|
| 357 |
+
|
| 358 |
+
except Exception as e:
|
| 359 |
+
logger.warning(f"Frame extraction attempt {attempt + 1} failed: {e}")
|
| 360 |
+
continue
|
| 361 |
+
|
| 362 |
+
cap.release()
|
| 363 |
+
return False
|
| 364 |
+
|
| 365 |
+
except Exception as e:
|
| 366 |
+
logger.error(f"Critical error in frame extraction: {e}")
|
| 367 |
+
cap.release()
|
| 368 |
+
return False
|
| 369 |
+
|
| 370 |
+
def create_highlights_video(video_path: str, selected_segments: List[Dict], output_path: str):
|
| 371 |
+
"""Create highlights video from selected segments"""
|
| 372 |
+
if not selected_segments:
|
| 373 |
+
logger.error("β No segments selected for highlights")
|
| 374 |
+
return False
|
| 375 |
+
|
| 376 |
+
# Create temporary files for each segment
|
| 377 |
+
temp_files = []
|
| 378 |
+
temp_dir = tempfile.mkdtemp()
|
| 379 |
+
|
| 380 |
+
for i, segment in enumerate(selected_segments):
|
| 381 |
+
temp_file = os.path.join(temp_dir, f"segment_{i}.mp4")
|
| 382 |
+
|
| 383 |
+
cmd = [
|
| 384 |
+
'ffmpeg', '-i', video_path,
|
| 385 |
+
'-ss', str(segment['start_time']),
|
| 386 |
+
'-t', str(segment['duration']),
|
| 387 |
+
'-c', 'copy', # Copy streams without re-encoding
|
| 388 |
+
'-y', temp_file
|
| 389 |
+
]
|
| 390 |
+
|
| 391 |
+
try:
|
| 392 |
+
subprocess.run(cmd, check=True, capture_output=True)
|
| 393 |
+
temp_files.append(temp_file)
|
| 394 |
+
logger.info(f"β
Created segment {i+1}/{len(selected_segments)}")
|
| 395 |
+
except subprocess.CalledProcessError as e:
|
| 396 |
+
logger.error(f"β Failed to create segment {i+1}: {e}")
|
| 397 |
+
continue
|
| 398 |
+
|
| 399 |
+
if not temp_files:
|
| 400 |
+
logger.error("β No valid segments created")
|
| 401 |
+
return False
|
| 402 |
+
|
| 403 |
+
# Create concat file
|
| 404 |
+
concat_file = os.path.join(temp_dir, "concat.txt")
|
| 405 |
+
with open(concat_file, 'w') as f:
|
| 406 |
+
for temp_file in temp_files:
|
| 407 |
+
f.write(f"file '{temp_file}'\n")
|
| 408 |
+
|
| 409 |
+
# Concatenate segments
|
| 410 |
+
cmd = [
|
| 411 |
+
'ffmpeg', '-f', 'concat', '-safe', '0',
|
| 412 |
+
'-i', concat_file,
|
| 413 |
+
'-c', 'copy',
|
| 414 |
+
'-y', output_path
|
| 415 |
+
]
|
| 416 |
+
|
| 417 |
+
try:
|
| 418 |
+
subprocess.run(cmd, check=True, capture_output=True)
|
| 419 |
+
logger.info(f"β
Highlights video created: {output_path}")
|
| 420 |
+
|
| 421 |
+
# Cleanup
|
| 422 |
+
for temp_file in temp_files:
|
| 423 |
+
try:
|
| 424 |
+
os.unlink(temp_file)
|
| 425 |
+
except:
|
| 426 |
+
pass
|
| 427 |
+
try:
|
| 428 |
+
os.unlink(concat_file)
|
| 429 |
+
os.rmdir(temp_dir)
|
| 430 |
+
except:
|
| 431 |
+
pass
|
| 432 |
+
|
| 433 |
+
return True
|
| 434 |
+
except subprocess.CalledProcessError as e:
|
| 435 |
+
logger.error(f"β Failed to create highlights video: {e}")
|
| 436 |
+
return False
|
| 437 |
+
|
| 438 |
+
def main():
|
| 439 |
+
parser = argparse.ArgumentParser(description="Audio-Enhanced Video Highlights Generator")
|
| 440 |
+
parser.add_argument("video_path", help="Path to input video file")
|
| 441 |
+
parser.add_argument("--output", "-o", default="audio_enhanced_highlights.mp4",
|
| 442 |
+
help="Output highlights video path")
|
| 443 |
+
parser.add_argument("--interval", "-i", type=float, default=10.0,
|
| 444 |
+
help="Analysis interval in seconds (default: 10.0)")
|
| 445 |
+
parser.add_argument("--min-score", "-s", type=float, default=7.0,
|
| 446 |
+
help="Minimum score for highlights (default: 7.0)")
|
| 447 |
+
parser.add_argument("--max-highlights", "-m", type=int, default=5,
|
| 448 |
+
help="Maximum number of highlights (default: 5)")
|
| 449 |
+
parser.add_argument("--whisper-model", "-w", default="base",
|
| 450 |
+
choices=["tiny", "base", "small", "medium", "large"],
|
| 451 |
+
help="Whisper model size (default: base)")
|
| 452 |
+
parser.add_argument("--timeout", "-t", type=int, default=30,
|
| 453 |
+
help="Timeout for each analysis in seconds (default: 30)")
|
| 454 |
+
parser.add_argument("--save-analysis", action="store_true",
|
| 455 |
+
help="Save detailed analysis to JSON file")
|
| 456 |
+
|
| 457 |
+
args = parser.parse_args()
|
| 458 |
+
|
| 459 |
+
# Validate input
|
| 460 |
+
if not os.path.exists(args.video_path):
|
| 461 |
+
print(f"β Video file not found: {args.video_path}")
|
| 462 |
+
sys.exit(1)
|
| 463 |
+
|
| 464 |
+
print("π¬ Audio-Enhanced Video Highlights Generator")
|
| 465 |
+
print(f"π Input: {args.video_path}")
|
| 466 |
+
print(f"π Output: {args.output}")
|
| 467 |
+
print(f"β±οΈ Analysis interval: {args.interval}s")
|
| 468 |
+
print(f"π― Minimum score: {args.min_score}")
|
| 469 |
+
print(f"π Max highlights: {args.max_highlights}")
|
| 470 |
+
print(f"ποΈ Whisper model: {args.whisper_model}")
|
| 471 |
+
print()
|
| 472 |
+
|
| 473 |
+
try:
|
| 474 |
+
# Initialize analyzer
|
| 475 |
+
analyzer = AudioVisualAnalyzer(
|
| 476 |
+
whisper_model_size=args.whisper_model,
|
| 477 |
+
timeout_seconds=args.timeout
|
| 478 |
+
)
|
| 479 |
+
|
| 480 |
+
# Extract segments for analysis
|
| 481 |
+
segments = extract_frames_at_intervals(args.video_path, args.interval)
|
| 482 |
+
print(f"π Analyzing {len(segments)} segments...")
|
| 483 |
+
|
| 484 |
+
analyzed_segments = []
|
| 485 |
+
temp_frame_path = "temp_frame.jpg"
|
| 486 |
+
|
| 487 |
+
for i, segment in enumerate(segments):
|
| 488 |
+
print(f"\nπ Segment {i+1}/{len(segments)} (t={segment['start_time']:.1f}s)")
|
| 489 |
+
|
| 490 |
+
# Save frame for visual analysis
|
| 491 |
+
if save_frame_at_time(args.video_path, segment['start_time'], temp_frame_path):
|
| 492 |
+
# Analyze segment
|
| 493 |
+
analysis = analyzer.analyze_segment(args.video_path, segment, temp_frame_path)
|
| 494 |
+
analyzed_segments.append(analysis)
|
| 495 |
+
|
| 496 |
+
print(f" ποΈ Visual: {analysis['visual_score']:.1f}/10")
|
| 497 |
+
print(f" ποΈ Audio: '{analysis['audio_text'][:50]}...' ({analysis['audio_language']})")
|
| 498 |
+
print(f" π― Combined: {analysis['combined_score']:.1f}/10")
|
| 499 |
+
else:
|
| 500 |
+
print(f" β Failed to extract frame")
|
| 501 |
+
|
| 502 |
+
# Cleanup temp frame
|
| 503 |
+
try:
|
| 504 |
+
os.unlink(temp_frame_path)
|
| 505 |
+
except:
|
| 506 |
+
pass
|
| 507 |
+
|
| 508 |
+
if not analyzed_segments:
|
| 509 |
+
print("β No segments analyzed successfully")
|
| 510 |
+
sys.exit(1)
|
| 511 |
+
|
| 512 |
+
# Select best segments
|
| 513 |
+
analyzed_segments.sort(key=lambda x: x['combined_score'], reverse=True)
|
| 514 |
+
selected_segments = [s for s in analyzed_segments if s['combined_score'] >= args.min_score]
|
| 515 |
+
selected_segments = selected_segments[:args.max_highlights]
|
| 516 |
+
|
| 517 |
+
print(f"\nπ Selected {len(selected_segments)} highlights:")
|
| 518 |
+
for i, segment in enumerate(selected_segments):
|
| 519 |
+
print(f"{i+1}. t={segment['start_time']:.1f}s, score={segment['combined_score']:.1f}")
|
| 520 |
+
if segment['audio_text']:
|
| 521 |
+
print(f" Audio: \"{segment['audio_text'][:100]}...\"")
|
| 522 |
+
|
| 523 |
+
if not selected_segments:
|
| 524 |
+
print(f"β No segments met minimum score of {args.min_score}")
|
| 525 |
+
sys.exit(1)
|
| 526 |
+
|
| 527 |
+
# Create highlights video
|
| 528 |
+
print(f"\n㪠Creating highlights video...")
|
| 529 |
+
success = create_highlights_video(args.video_path, selected_segments, args.output)
|
| 530 |
+
|
| 531 |
+
if success:
|
| 532 |
+
print(f"β
Audio-enhanced highlights created: {args.output}")
|
| 533 |
+
|
| 534 |
+
# Save analysis if requested
|
| 535 |
+
if args.save_analysis:
|
| 536 |
+
analysis_file = args.output.replace('.mp4', '_analysis.json')
|
| 537 |
+
with open(analysis_file, 'w') as f:
|
| 538 |
+
json.dump({
|
| 539 |
+
'input_video': args.video_path,
|
| 540 |
+
'output_video': args.output,
|
| 541 |
+
'settings': {
|
| 542 |
+
'interval': args.interval,
|
| 543 |
+
'min_score': args.min_score,
|
| 544 |
+
'max_highlights': args.max_highlights,
|
| 545 |
+
'whisper_model': args.whisper_model,
|
| 546 |
+
'timeout': args.timeout
|
| 547 |
+
},
|
| 548 |
+
'segments': analyzed_segments,
|
| 549 |
+
'selected_segments': selected_segments
|
| 550 |
+
}, f, indent=2)
|
| 551 |
+
print(f"π Analysis saved: {analysis_file}")
|
| 552 |
+
else:
|
| 553 |
+
print("β Failed to create highlights video")
|
| 554 |
+
sys.exit(1)
|
| 555 |
+
|
| 556 |
+
except KeyboardInterrupt:
|
| 557 |
+
print("\nβΉοΈ Operation cancelled by user")
|
| 558 |
+
sys.exit(1)
|
| 559 |
+
except Exception as e:
|
| 560 |
+
print(f"β Error: {e}")
|
| 561 |
+
sys.exit(1)
|
| 562 |
+
|
| 563 |
+
if __name__ == "__main__":
|
| 564 |
+
main()
|
fastapi_requirements.txt
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# FastAPI Dependencies for SmolVLM2 Video Highlights API
|
| 2 |
+
# Add these to your existing requirements.txt
|
| 3 |
+
|
| 4 |
+
fastapi==0.104.1
|
| 5 |
+
uvicorn[standard]==0.24.0
|
| 6 |
+
python-multipart==0.0.6
|
| 7 |
+
pydantic==2.5.0
|
| 8 |
+
python-jose[cryptography]==3.3.0
|
| 9 |
+
passlib[bcrypt]==1.7.4
|
highlights_api.py
ADDED
|
@@ -0,0 +1,345 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
FastAPI Wrapper for Audio-Enhanced Video Highlights
|
| 4 |
+
Converts your SmolVLM2 + Whisper system into a web API for Android apps
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
from fastapi import FastAPI, UploadFile, File, HTTPException, BackgroundTasks
|
| 8 |
+
from fastapi.responses import FileResponse, JSONResponse
|
| 9 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 10 |
+
from pydantic import BaseModel
|
| 11 |
+
import os
|
| 12 |
+
import sys
|
| 13 |
+
import tempfile
|
| 14 |
+
import uuid
|
| 15 |
+
import json
|
| 16 |
+
import asyncio
|
| 17 |
+
from pathlib import Path
|
| 18 |
+
from typing import Optional
|
| 19 |
+
import logging
|
| 20 |
+
|
| 21 |
+
# Add src directory to path for imports
|
| 22 |
+
sys.path.append(str(Path(__file__).parent / "src"))
|
| 23 |
+
|
| 24 |
+
try:
|
| 25 |
+
from audio_enhanced_highlights_final import AudioVisualAnalyzer, extract_frames_at_intervals, save_frame_at_time, create_highlights_video
|
| 26 |
+
except ImportError:
|
| 27 |
+
print("β Cannot import audio_enhanced_highlights_final.py")
|
| 28 |
+
sys.exit(1)
|
| 29 |
+
|
| 30 |
+
# Configure logging
|
| 31 |
+
logging.basicConfig(level=logging.INFO)
|
| 32 |
+
logger = logging.getLogger(__name__)
|
| 33 |
+
|
| 34 |
+
# FastAPI app
|
| 35 |
+
app = FastAPI(
|
| 36 |
+
title="SmolVLM2 Video Highlights API",
|
| 37 |
+
description="Generate intelligent video highlights using SmolVLM2 + Whisper",
|
| 38 |
+
version="1.0.0"
|
| 39 |
+
)
|
| 40 |
+
|
| 41 |
+
# Enable CORS for Android apps
|
| 42 |
+
app.add_middleware(
|
| 43 |
+
CORSMiddleware,
|
| 44 |
+
allow_origins=["*"], # In production, specify your Android app's domain
|
| 45 |
+
allow_credentials=True,
|
| 46 |
+
allow_methods=["*"],
|
| 47 |
+
allow_headers=["*"],
|
| 48 |
+
)
|
| 49 |
+
|
| 50 |
+
# Request/Response models
|
| 51 |
+
class AnalysisRequest(BaseModel):
|
| 52 |
+
interval: float = 20.0
|
| 53 |
+
min_score: float = 6.5
|
| 54 |
+
max_highlights: int = 3
|
| 55 |
+
whisper_model: str = "base"
|
| 56 |
+
timeout: int = 35
|
| 57 |
+
|
| 58 |
+
class AnalysisResponse(BaseModel):
|
| 59 |
+
job_id: str
|
| 60 |
+
status: str
|
| 61 |
+
message: str
|
| 62 |
+
|
| 63 |
+
class JobStatus(BaseModel):
|
| 64 |
+
job_id: str
|
| 65 |
+
status: str # "processing", "completed", "failed"
|
| 66 |
+
progress: int # 0-100
|
| 67 |
+
message: str
|
| 68 |
+
highlights_url: Optional[str] = None
|
| 69 |
+
analysis_url: Optional[str] = None
|
| 70 |
+
|
| 71 |
+
# Global storage for jobs (in production, use Redis/database)
|
| 72 |
+
active_jobs = {}
|
| 73 |
+
completed_jobs = {}
|
| 74 |
+
|
| 75 |
+
# Create output directories
|
| 76 |
+
os.makedirs("outputs", exist_ok=True)
|
| 77 |
+
os.makedirs("temp", exist_ok=True)
|
| 78 |
+
|
| 79 |
+
@app.get("/")
|
| 80 |
+
async def root():
|
| 81 |
+
return {
|
| 82 |
+
"message": "SmolVLM2 Video Highlights API",
|
| 83 |
+
"version": "1.0.0",
|
| 84 |
+
"endpoints": {
|
| 85 |
+
"upload": "/upload-video",
|
| 86 |
+
"status": "/job-status/{job_id}",
|
| 87 |
+
"download": "/download/{filename}"
|
| 88 |
+
}
|
| 89 |
+
}
|
| 90 |
+
|
| 91 |
+
@app.post("/upload-video", response_model=AnalysisResponse)
|
| 92 |
+
async def upload_video(
|
| 93 |
+
background_tasks: BackgroundTasks,
|
| 94 |
+
video: UploadFile = File(...),
|
| 95 |
+
interval: float = 20.0,
|
| 96 |
+
min_score: float = 6.5,
|
| 97 |
+
max_highlights: int = 3,
|
| 98 |
+
whisper_model: str = "base",
|
| 99 |
+
timeout: int = 35
|
| 100 |
+
):
|
| 101 |
+
"""
|
| 102 |
+
Upload a video and start processing highlights
|
| 103 |
+
"""
|
| 104 |
+
# Validate file
|
| 105 |
+
if not video.filename.lower().endswith(('.mp4', '.avi', '.mov', '.mkv')):
|
| 106 |
+
raise HTTPException(status_code=400, detail="Only video files are supported")
|
| 107 |
+
|
| 108 |
+
# Generate unique job ID
|
| 109 |
+
job_id = str(uuid.uuid4())
|
| 110 |
+
|
| 111 |
+
try:
|
| 112 |
+
# Save uploaded video
|
| 113 |
+
temp_video_path = f"temp/{job_id}_{video.filename}"
|
| 114 |
+
with open(temp_video_path, "wb") as f:
|
| 115 |
+
content = await video.read()
|
| 116 |
+
f.write(content)
|
| 117 |
+
|
| 118 |
+
# Store job info
|
| 119 |
+
active_jobs[job_id] = {
|
| 120 |
+
"status": "processing",
|
| 121 |
+
"progress": 0,
|
| 122 |
+
"message": "Video uploaded, starting analysis...",
|
| 123 |
+
"video_path": temp_video_path,
|
| 124 |
+
"settings": {
|
| 125 |
+
"interval": interval,
|
| 126 |
+
"min_score": min_score,
|
| 127 |
+
"max_highlights": max_highlights,
|
| 128 |
+
"whisper_model": whisper_model,
|
| 129 |
+
"timeout": timeout
|
| 130 |
+
}
|
| 131 |
+
}
|
| 132 |
+
|
| 133 |
+
# Start processing in background
|
| 134 |
+
background_tasks.add_task(
|
| 135 |
+
process_video_highlights,
|
| 136 |
+
job_id,
|
| 137 |
+
temp_video_path,
|
| 138 |
+
interval,
|
| 139 |
+
min_score,
|
| 140 |
+
max_highlights,
|
| 141 |
+
whisper_model,
|
| 142 |
+
timeout
|
| 143 |
+
)
|
| 144 |
+
|
| 145 |
+
return AnalysisResponse(
|
| 146 |
+
job_id=job_id,
|
| 147 |
+
status="processing",
|
| 148 |
+
message="Video uploaded successfully. Processing started."
|
| 149 |
+
)
|
| 150 |
+
|
| 151 |
+
except Exception as e:
|
| 152 |
+
logger.error(f"Upload failed: {e}")
|
| 153 |
+
raise HTTPException(status_code=500, detail=f"Upload failed: {str(e)}")
|
| 154 |
+
|
| 155 |
+
@app.get("/job-status/{job_id}", response_model=JobStatus)
|
| 156 |
+
async def get_job_status(job_id: str):
|
| 157 |
+
"""
|
| 158 |
+
Get the status of a processing job
|
| 159 |
+
"""
|
| 160 |
+
# Check active jobs
|
| 161 |
+
if job_id in active_jobs:
|
| 162 |
+
job = active_jobs[job_id]
|
| 163 |
+
return JobStatus(
|
| 164 |
+
job_id=job_id,
|
| 165 |
+
status=job["status"],
|
| 166 |
+
progress=job["progress"],
|
| 167 |
+
message=job["message"]
|
| 168 |
+
)
|
| 169 |
+
|
| 170 |
+
# Check completed jobs
|
| 171 |
+
if job_id in completed_jobs:
|
| 172 |
+
job = completed_jobs[job_id]
|
| 173 |
+
return JobStatus(
|
| 174 |
+
job_id=job_id,
|
| 175 |
+
status=job["status"],
|
| 176 |
+
progress=100,
|
| 177 |
+
message=job["message"],
|
| 178 |
+
highlights_url=job.get("highlights_url"),
|
| 179 |
+
analysis_url=job.get("analysis_url")
|
| 180 |
+
)
|
| 181 |
+
|
| 182 |
+
raise HTTPException(status_code=404, detail="Job not found")
|
| 183 |
+
|
| 184 |
+
@app.get("/download/{filename}")
|
| 185 |
+
async def download_file(filename: str):
|
| 186 |
+
"""
|
| 187 |
+
Download generated files
|
| 188 |
+
"""
|
| 189 |
+
file_path = f"outputs/{filename}"
|
| 190 |
+
if not os.path.exists(file_path):
|
| 191 |
+
raise HTTPException(status_code=404, detail="File not found")
|
| 192 |
+
|
| 193 |
+
return FileResponse(
|
| 194 |
+
file_path,
|
| 195 |
+
media_type='application/octet-stream',
|
| 196 |
+
filename=filename
|
| 197 |
+
)
|
| 198 |
+
|
| 199 |
+
async def process_video_highlights(
|
| 200 |
+
job_id: str,
|
| 201 |
+
video_path: str,
|
| 202 |
+
interval: float,
|
| 203 |
+
min_score: float,
|
| 204 |
+
max_highlights: int,
|
| 205 |
+
whisper_model: str,
|
| 206 |
+
timeout: int
|
| 207 |
+
):
|
| 208 |
+
"""
|
| 209 |
+
Background task to process video highlights
|
| 210 |
+
"""
|
| 211 |
+
try:
|
| 212 |
+
# Update status
|
| 213 |
+
active_jobs[job_id]["progress"] = 10
|
| 214 |
+
active_jobs[job_id]["message"] = "Initializing AI models..."
|
| 215 |
+
|
| 216 |
+
# Initialize analyzer
|
| 217 |
+
analyzer = AudioVisualAnalyzer(
|
| 218 |
+
whisper_model_size=whisper_model,
|
| 219 |
+
timeout_seconds=timeout
|
| 220 |
+
)
|
| 221 |
+
|
| 222 |
+
active_jobs[job_id]["progress"] = 20
|
| 223 |
+
active_jobs[job_id]["message"] = "Extracting video segments..."
|
| 224 |
+
|
| 225 |
+
# Extract segments
|
| 226 |
+
segments = extract_frames_at_intervals(video_path, interval)
|
| 227 |
+
total_segments = len(segments)
|
| 228 |
+
|
| 229 |
+
active_jobs[job_id]["progress"] = 30
|
| 230 |
+
active_jobs[job_id]["message"] = f"Analyzing {total_segments} segments..."
|
| 231 |
+
|
| 232 |
+
# Analyze segments
|
| 233 |
+
analyzed_segments = []
|
| 234 |
+
temp_frame_path = f"temp/{job_id}_frame.jpg"
|
| 235 |
+
|
| 236 |
+
for i, segment in enumerate(segments):
|
| 237 |
+
# Update progress
|
| 238 |
+
progress = 30 + int((i / total_segments) * 50) # 30-80%
|
| 239 |
+
active_jobs[job_id]["progress"] = progress
|
| 240 |
+
active_jobs[job_id]["message"] = f"Analyzing segment {i+1}/{total_segments}"
|
| 241 |
+
|
| 242 |
+
# Save frame for visual analysis
|
| 243 |
+
if save_frame_at_time(video_path, segment['start_time'], temp_frame_path):
|
| 244 |
+
# Analyze segment
|
| 245 |
+
analysis = analyzer.analyze_segment(video_path, segment, temp_frame_path)
|
| 246 |
+
analyzed_segments.append(analysis)
|
| 247 |
+
|
| 248 |
+
# Cleanup temp frame
|
| 249 |
+
try:
|
| 250 |
+
os.unlink(temp_frame_path)
|
| 251 |
+
except:
|
| 252 |
+
pass
|
| 253 |
+
|
| 254 |
+
active_jobs[job_id]["progress"] = 85
|
| 255 |
+
active_jobs[job_id]["message"] = "Selecting best highlights..."
|
| 256 |
+
|
| 257 |
+
# Select best segments
|
| 258 |
+
analyzed_segments.sort(key=lambda x: x['combined_score'], reverse=True)
|
| 259 |
+
selected_segments = [s for s in analyzed_segments if s['combined_score'] >= min_score]
|
| 260 |
+
selected_segments = selected_segments[:max_highlights]
|
| 261 |
+
|
| 262 |
+
if not selected_segments:
|
| 263 |
+
raise Exception(f"No segments met minimum score of {min_score}")
|
| 264 |
+
|
| 265 |
+
active_jobs[job_id]["progress"] = 90
|
| 266 |
+
active_jobs[job_id]["message"] = f"Creating highlights video with {len(selected_segments)} segments..."
|
| 267 |
+
|
| 268 |
+
# Create output filenames
|
| 269 |
+
highlights_filename = f"{job_id}_highlights.mp4"
|
| 270 |
+
analysis_filename = f"{job_id}_analysis.json"
|
| 271 |
+
highlights_path = f"outputs/{highlights_filename}"
|
| 272 |
+
analysis_path = f"outputs/{analysis_filename}"
|
| 273 |
+
|
| 274 |
+
# Create highlights video
|
| 275 |
+
success = create_highlights_video(video_path, selected_segments, highlights_path)
|
| 276 |
+
|
| 277 |
+
if not success:
|
| 278 |
+
raise Exception("Failed to create highlights video")
|
| 279 |
+
|
| 280 |
+
# Save analysis
|
| 281 |
+
analysis_data = {
|
| 282 |
+
'job_id': job_id,
|
| 283 |
+
'input_video': video_path,
|
| 284 |
+
'output_video': highlights_path,
|
| 285 |
+
'settings': {
|
| 286 |
+
'interval': interval,
|
| 287 |
+
'min_score': min_score,
|
| 288 |
+
'max_highlights': max_highlights,
|
| 289 |
+
'whisper_model': whisper_model,
|
| 290 |
+
'timeout': timeout
|
| 291 |
+
},
|
| 292 |
+
'segments': analyzed_segments,
|
| 293 |
+
'selected_segments': selected_segments,
|
| 294 |
+
'summary': {
|
| 295 |
+
'total_segments': len(analyzed_segments),
|
| 296 |
+
'selected_segments': len(selected_segments),
|
| 297 |
+
'processing_time': "Completed successfully"
|
| 298 |
+
}
|
| 299 |
+
}
|
| 300 |
+
|
| 301 |
+
with open(analysis_path, 'w') as f:
|
| 302 |
+
json.dump(analysis_data, f, indent=2)
|
| 303 |
+
|
| 304 |
+
# Mark as completed
|
| 305 |
+
completed_jobs[job_id] = {
|
| 306 |
+
"status": "completed",
|
| 307 |
+
"message": f"Successfully created highlights with {len(selected_segments)} segments",
|
| 308 |
+
"highlights_url": f"/download/{highlights_filename}",
|
| 309 |
+
"analysis_url": f"/download/{analysis_filename}",
|
| 310 |
+
"summary": analysis_data['summary']
|
| 311 |
+
}
|
| 312 |
+
|
| 313 |
+
# Remove from active jobs
|
| 314 |
+
del active_jobs[job_id]
|
| 315 |
+
|
| 316 |
+
# Cleanup temp video
|
| 317 |
+
try:
|
| 318 |
+
os.unlink(video_path)
|
| 319 |
+
except:
|
| 320 |
+
pass
|
| 321 |
+
|
| 322 |
+
except Exception as e:
|
| 323 |
+
logger.error(f"Processing failed for job {job_id}: {e}")
|
| 324 |
+
|
| 325 |
+
# Mark as failed
|
| 326 |
+
completed_jobs[job_id] = {
|
| 327 |
+
"status": "failed",
|
| 328 |
+
"message": f"Processing failed: {str(e)}",
|
| 329 |
+
"highlights_url": None,
|
| 330 |
+
"analysis_url": None
|
| 331 |
+
}
|
| 332 |
+
|
| 333 |
+
# Remove from active jobs
|
| 334 |
+
if job_id in active_jobs:
|
| 335 |
+
del active_jobs[job_id]
|
| 336 |
+
|
| 337 |
+
# Cleanup
|
| 338 |
+
try:
|
| 339 |
+
os.unlink(video_path)
|
| 340 |
+
except:
|
| 341 |
+
pass
|
| 342 |
+
|
| 343 |
+
if __name__ == "__main__":
|
| 344 |
+
import uvicorn
|
| 345 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|
requirements.txt
ADDED
|
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# SmolVLM2 Video Testing Requirements
|
| 2 |
+
|
| 3 |
+
# Core ML and Vision Libraries
|
| 4 |
+
torch>=2.0.0
|
| 5 |
+
torchvision>=0.15.0
|
| 6 |
+
transformers>=4.40.0
|
| 7 |
+
accelerate>=0.27.0
|
| 8 |
+
pillow>=10.0.0
|
| 9 |
+
|
| 10 |
+
# Video Processing
|
| 11 |
+
opencv-python>=4.8.0
|
| 12 |
+
imageio>=2.31.0
|
| 13 |
+
imageio-ffmpeg>=0.4.9
|
| 14 |
+
|
| 15 |
+
# Hugging Face Integration
|
| 16 |
+
huggingface-hub>=0.20.0
|
| 17 |
+
datasets>=2.16.0
|
| 18 |
+
|
| 19 |
+
# Utilities
|
| 20 |
+
numpy>=1.24.0
|
| 21 |
+
matplotlib>=3.7.0
|
| 22 |
+
tqdm>=4.65.0
|
| 23 |
+
requests>=2.31.0
|
| 24 |
+
|
| 25 |
+
# Development Tools
|
| 26 |
+
jupyter>=1.0.0
|
| 27 |
+
ipykernel>=6.25.0
|
| 28 |
+
black>=23.0.0
|
| 29 |
+
flake8>=6.0.0
|
| 30 |
+
|
| 31 |
+
# Optional: For better performance on Apple Silicon
|
| 32 |
+
# Install with: pip install --upgrade --force-reinstall --no-cache-dir torch torchvision --index-url https://download.pytorch.org/whl/cpu
|
src/smolvlm2_handler.py
ADDED
|
@@ -0,0 +1,281 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
SmolVLM2 Model Handler
|
| 4 |
+
Handles loading and inference with SmolVLM2-1.7B-Instruct model
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
import torch
|
| 8 |
+
from transformers import AutoModelForImageTextToText, AutoProcessor
|
| 9 |
+
from PIL import Image
|
| 10 |
+
import requests
|
| 11 |
+
from typing import List, Union, Optional
|
| 12 |
+
import logging
|
| 13 |
+
import warnings
|
| 14 |
+
|
| 15 |
+
# Configure logging
|
| 16 |
+
logging.basicConfig(level=logging.INFO)
|
| 17 |
+
logger = logging.getLogger(__name__)
|
| 18 |
+
|
| 19 |
+
# Suppress some warnings for cleaner output
|
| 20 |
+
warnings.filterwarnings("ignore", category=UserWarning)
|
| 21 |
+
|
| 22 |
+
class SmolVLM2Handler:
|
| 23 |
+
"""Handler for SmolVLM2 model operations"""
|
| 24 |
+
|
| 25 |
+
def __init__(self, model_name: str = "HuggingFaceTB/SmolVLM2-2.2B-Instruct", device: str = "auto"):
|
| 26 |
+
"""
|
| 27 |
+
Initialize SmolVLM2 model
|
| 28 |
+
|
| 29 |
+
Args:
|
| 30 |
+
model_name: HuggingFace model identifier
|
| 31 |
+
device: Device to use ('auto', 'cpu', 'cuda', 'mps')
|
| 32 |
+
"""
|
| 33 |
+
self.model_name = model_name
|
| 34 |
+
self.device = self._get_device(device)
|
| 35 |
+
self.model = None
|
| 36 |
+
self.processor = None
|
| 37 |
+
|
| 38 |
+
logger.info(f"Initializing SmolVLM2 on device: {self.device}")
|
| 39 |
+
self._load_model()
|
| 40 |
+
|
| 41 |
+
def _get_device(self, device: str) -> str:
|
| 42 |
+
"""Determine the best device to use"""
|
| 43 |
+
if device == "auto":
|
| 44 |
+
if torch.cuda.is_available():
|
| 45 |
+
return "cuda"
|
| 46 |
+
elif hasattr(torch.backends, 'mps') and torch.backends.mps.is_available():
|
| 47 |
+
return "mps" # Apple Silicon GPU
|
| 48 |
+
else:
|
| 49 |
+
return "cpu"
|
| 50 |
+
return device
|
| 51 |
+
|
| 52 |
+
def _load_model(self):
|
| 53 |
+
"""Load the model and processor"""
|
| 54 |
+
try:
|
| 55 |
+
logger.info("Loading processor...")
|
| 56 |
+
self.processor = AutoProcessor.from_pretrained(
|
| 57 |
+
self.model_name,
|
| 58 |
+
trust_remote_code=True
|
| 59 |
+
)
|
| 60 |
+
|
| 61 |
+
logger.info("Loading model...")
|
| 62 |
+
self.model = AutoModelForImageTextToText.from_pretrained(
|
| 63 |
+
self.model_name,
|
| 64 |
+
torch_dtype=torch.float16 if self.device != "cpu" else torch.float32,
|
| 65 |
+
trust_remote_code=True,
|
| 66 |
+
device_map=self.device if self.device != "cpu" else None
|
| 67 |
+
)
|
| 68 |
+
|
| 69 |
+
if self.device == "cpu":
|
| 70 |
+
self.model = self.model.to(self.device)
|
| 71 |
+
|
| 72 |
+
logger.info("β
Model loaded successfully!")
|
| 73 |
+
|
| 74 |
+
except Exception as e:
|
| 75 |
+
logger.error(f"β Failed to load model: {e}")
|
| 76 |
+
raise
|
| 77 |
+
|
| 78 |
+
def process_image(self, image_input: Union[str, Image.Image]) -> Image.Image:
|
| 79 |
+
"""
|
| 80 |
+
Process image input into PIL Image
|
| 81 |
+
|
| 82 |
+
Args:
|
| 83 |
+
image_input: File path, URL, or PIL Image
|
| 84 |
+
|
| 85 |
+
Returns:
|
| 86 |
+
PIL Image object
|
| 87 |
+
"""
|
| 88 |
+
if isinstance(image_input, str):
|
| 89 |
+
if image_input.startswith(('http://', 'https://')):
|
| 90 |
+
# Download from URL
|
| 91 |
+
response = requests.get(image_input)
|
| 92 |
+
image = Image.open(requests.get(image_input, stream=True).raw)
|
| 93 |
+
else:
|
| 94 |
+
# Load from file path
|
| 95 |
+
image = Image.open(image_input)
|
| 96 |
+
elif isinstance(image_input, Image.Image):
|
| 97 |
+
image = image_input
|
| 98 |
+
else:
|
| 99 |
+
raise ValueError("Image input must be file path, URL, or PIL Image")
|
| 100 |
+
|
| 101 |
+
# Convert to RGB if necessary
|
| 102 |
+
if image.mode != 'RGB':
|
| 103 |
+
image = image.convert('RGB')
|
| 104 |
+
|
| 105 |
+
return image
|
| 106 |
+
|
| 107 |
+
def generate_response(
|
| 108 |
+
self,
|
| 109 |
+
image_input: Union[str, Image.Image, List[Image.Image]],
|
| 110 |
+
text_prompt: str,
|
| 111 |
+
max_new_tokens: int = 512,
|
| 112 |
+
temperature: float = 0.7,
|
| 113 |
+
do_sample: bool = True
|
| 114 |
+
) -> str:
|
| 115 |
+
"""
|
| 116 |
+
Generate response from image(s) and text prompt
|
| 117 |
+
|
| 118 |
+
Args:
|
| 119 |
+
image_input: Single image or list of images
|
| 120 |
+
text_prompt: Text prompt/question
|
| 121 |
+
max_new_tokens: Maximum tokens to generate
|
| 122 |
+
temperature: Sampling temperature
|
| 123 |
+
do_sample: Whether to use sampling
|
| 124 |
+
|
| 125 |
+
Returns:
|
| 126 |
+
Generated text response
|
| 127 |
+
"""
|
| 128 |
+
try:
|
| 129 |
+
# Process images
|
| 130 |
+
if isinstance(image_input, list):
|
| 131 |
+
images = [self.process_image(img) for img in image_input]
|
| 132 |
+
else:
|
| 133 |
+
images = [self.process_image(image_input)]
|
| 134 |
+
|
| 135 |
+
# Create proper conversation format for SmolVLM2
|
| 136 |
+
messages = [
|
| 137 |
+
{
|
| 138 |
+
"role": "user",
|
| 139 |
+
"content": [{"type": "text", "text": text_prompt}]
|
| 140 |
+
}
|
| 141 |
+
]
|
| 142 |
+
|
| 143 |
+
# Add image content to the message
|
| 144 |
+
for img in images:
|
| 145 |
+
messages[0]["content"].insert(0, {"type": "image", "image": img})
|
| 146 |
+
|
| 147 |
+
# Apply chat template
|
| 148 |
+
try:
|
| 149 |
+
prompt = self.processor.apply_chat_template(
|
| 150 |
+
messages,
|
| 151 |
+
add_generation_prompt=True
|
| 152 |
+
)
|
| 153 |
+
except:
|
| 154 |
+
# Fallback to simple format if chat template fails
|
| 155 |
+
image_tokens = "<image>" * len(images)
|
| 156 |
+
prompt = f"{image_tokens}{text_prompt}"
|
| 157 |
+
|
| 158 |
+
# Prepare inputs
|
| 159 |
+
inputs = self.processor(
|
| 160 |
+
images=images,
|
| 161 |
+
text=prompt,
|
| 162 |
+
return_tensors="pt"
|
| 163 |
+
).to(self.device)
|
| 164 |
+
|
| 165 |
+
# Generate response with robust parameters
|
| 166 |
+
with torch.no_grad():
|
| 167 |
+
try:
|
| 168 |
+
generated_ids = self.model.generate(
|
| 169 |
+
**inputs,
|
| 170 |
+
max_new_tokens=max_new_tokens,
|
| 171 |
+
temperature=max(0.1, min(temperature, 1.0)), # Clamp temperature
|
| 172 |
+
do_sample=do_sample,
|
| 173 |
+
top_p=0.9,
|
| 174 |
+
repetition_penalty=1.1,
|
| 175 |
+
pad_token_id=self.processor.tokenizer.eos_token_id,
|
| 176 |
+
eos_token_id=self.processor.tokenizer.eos_token_id,
|
| 177 |
+
use_cache=True
|
| 178 |
+
)
|
| 179 |
+
except RuntimeError as e:
|
| 180 |
+
if "probability tensor" in str(e) or "nan" in str(e) or "inf" in str(e):
|
| 181 |
+
# Retry with more conservative parameters
|
| 182 |
+
logger.warning("Retrying with conservative parameters due to probability tensor error")
|
| 183 |
+
generated_ids = self.model.generate(
|
| 184 |
+
**inputs,
|
| 185 |
+
max_new_tokens=min(max_new_tokens, 256),
|
| 186 |
+
temperature=0.3,
|
| 187 |
+
do_sample=False, # Use greedy decoding
|
| 188 |
+
pad_token_id=self.processor.tokenizer.eos_token_id,
|
| 189 |
+
eos_token_id=self.processor.tokenizer.eos_token_id,
|
| 190 |
+
use_cache=True
|
| 191 |
+
)
|
| 192 |
+
else:
|
| 193 |
+
raise
|
| 194 |
+
|
| 195 |
+
# Decode only the new tokens (skip input)
|
| 196 |
+
input_length = inputs['input_ids'].shape[1]
|
| 197 |
+
new_tokens = generated_ids[0][input_length:]
|
| 198 |
+
|
| 199 |
+
generated_text = self.processor.tokenizer.decode(
|
| 200 |
+
new_tokens,
|
| 201 |
+
skip_special_tokens=True
|
| 202 |
+
).strip()
|
| 203 |
+
|
| 204 |
+
# Return meaningful response even if empty
|
| 205 |
+
if not generated_text:
|
| 206 |
+
return "I can see the image but cannot generate a specific description."
|
| 207 |
+
|
| 208 |
+
return generated_text
|
| 209 |
+
|
| 210 |
+
except Exception as e:
|
| 211 |
+
logger.error(f"β Error during generation: {e}")
|
| 212 |
+
raise
|
| 213 |
+
|
| 214 |
+
def analyze_video_frames(
|
| 215 |
+
self,
|
| 216 |
+
frames: List[Image.Image],
|
| 217 |
+
question: str,
|
| 218 |
+
max_frames: int = 8
|
| 219 |
+
) -> str:
|
| 220 |
+
"""
|
| 221 |
+
Analyze video frames and answer questions
|
| 222 |
+
|
| 223 |
+
Args:
|
| 224 |
+
frames: List of PIL Image frames
|
| 225 |
+
question: Question about the video
|
| 226 |
+
max_frames: Maximum number of frames to process
|
| 227 |
+
|
| 228 |
+
Returns:
|
| 229 |
+
Analysis result
|
| 230 |
+
"""
|
| 231 |
+
# Sample frames if too many
|
| 232 |
+
if len(frames) > max_frames:
|
| 233 |
+
step = len(frames) // max_frames
|
| 234 |
+
sampled_frames = frames[::step][:max_frames]
|
| 235 |
+
else:
|
| 236 |
+
sampled_frames = frames
|
| 237 |
+
|
| 238 |
+
logger.info(f"Analyzing {len(sampled_frames)} frames")
|
| 239 |
+
|
| 240 |
+
# Create a simple prompt for video analysis (don't add image tokens manually)
|
| 241 |
+
video_prompt = f"These are frames from a video. {question}"
|
| 242 |
+
|
| 243 |
+
return self.generate_response(sampled_frames, video_prompt)
|
| 244 |
+
|
| 245 |
+
def get_model_info(self) -> dict:
|
| 246 |
+
"""Get information about the loaded model"""
|
| 247 |
+
return {
|
| 248 |
+
"model_name": self.model_name,
|
| 249 |
+
"device": self.device,
|
| 250 |
+
"model_type": type(self.model).__name__,
|
| 251 |
+
"processor_type": type(self.processor).__name__,
|
| 252 |
+
"loaded": self.model is not None and self.processor is not None
|
| 253 |
+
}
|
| 254 |
+
|
| 255 |
+
def test_model():
|
| 256 |
+
"""Test the model with a simple example"""
|
| 257 |
+
try:
|
| 258 |
+
# Initialize model
|
| 259 |
+
vlm = SmolVLM2Handler()
|
| 260 |
+
|
| 261 |
+
print("π Model Info:")
|
| 262 |
+
info = vlm.get_model_info()
|
| 263 |
+
for key, value in info.items():
|
| 264 |
+
print(f" {key}: {value}")
|
| 265 |
+
|
| 266 |
+
# Test with a simple image (create a test image)
|
| 267 |
+
test_image = Image.new('RGB', (224, 224), color='blue')
|
| 268 |
+
test_prompt = "What color is this image?"
|
| 269 |
+
|
| 270 |
+
print(f"\nπ Testing with prompt: '{test_prompt}'")
|
| 271 |
+
response = vlm.generate_response(test_image, test_prompt)
|
| 272 |
+
print(f"π Response: {response}")
|
| 273 |
+
|
| 274 |
+
print("\nβ
Model test completed successfully!")
|
| 275 |
+
|
| 276 |
+
except Exception as e:
|
| 277 |
+
print(f"β Model test failed: {e}")
|
| 278 |
+
raise
|
| 279 |
+
|
| 280 |
+
if __name__ == "__main__":
|
| 281 |
+
test_model()
|