Spaces:
Runtime error
Runtime error
| # Copyright (c) Facebook, Inc. and its affiliates. | |
| # | |
| # This source code is licensed under the MIT license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| import logging | |
| import os | |
| from dataclasses import dataclass, field | |
| from typing import Optional | |
| from collections import OrderedDict | |
| import numpy as np | |
| import torch | |
| from fairseq import utils | |
| from fairseq.data import ( | |
| AppendTokenDataset, | |
| Dictionary, | |
| IdDataset, | |
| LMContextWindowDataset, | |
| MonolingualDataset, | |
| NestedDictionaryDataset, | |
| NumelDataset, | |
| PadDataset, | |
| PrependTokenDataset, | |
| SpeechDLMDataset, | |
| StripTokenDataset, | |
| TokenBlockDataset, | |
| TruncatedDictionary, | |
| data_utils, | |
| ) | |
| from fairseq.data.indexed_dataset import get_available_dataset_impl | |
| from fairseq.data.shorten_dataset import maybe_shorten_dataset | |
| from fairseq.dataclass import ChoiceEnum, FairseqDataclass | |
| from fairseq.tasks import LegacyFairseqTask, register_task | |
| from omegaconf import II | |
| SAMPLE_BREAK_MODE_CHOICES = ChoiceEnum(["none", "complete", "complete_doc", "eos"]) | |
| SHORTEN_METHOD_CHOICES = ChoiceEnum(["none", "truncate", "random_crop"]) | |
| logger = logging.getLogger(__name__) | |
| class SpeechDLMConfig(FairseqDataclass): | |
| data: Optional[str] = field( | |
| default=None, metadata={"help": "path to data directory"} | |
| ) | |
| channels: Optional[str] = field( | |
| default=None, | |
| metadata={ | |
| "help": 'comma-separated list of channels to load e.g., "unitA,unitB"' | |
| "(default: load all possible channels in the data path)" | |
| }, | |
| ) | |
| channel_weights: Optional[str] = field( | |
| default=None, | |
| metadata={ | |
| "help": "comma-separated list of weights for different losses" | |
| "(default: None, which means all losses are treated equally)" | |
| }, | |
| ) | |
| sample_break_mode: SAMPLE_BREAK_MODE_CHOICES = field( | |
| default="none", | |
| metadata={ | |
| "help": 'If omitted or "none", fills each sample with tokens-per-sample ' | |
| 'tokens. If set to "complete", splits samples only at the end ' | |
| "of sentence, but may include multiple sentences per sample. " | |
| '"complete_doc" is similar but respects doc boundaries. ' | |
| 'If set to "eos", includes only one sentence per sample.' | |
| }, | |
| ) | |
| tokens_per_sample: int = field( | |
| default=1024, | |
| metadata={"help": "max number of tokens per sample for LM dataset"}, | |
| ) | |
| output_dictionary_size: int = field( | |
| default=-1, metadata={"help": "limit the size of output dictionary"} | |
| ) | |
| # str type is a workaround to put **default=True** here | |
| next_unit_prediction: str = field( | |
| default="False", | |
| metadata={ | |
| "help": "Perform Next Unit Prediction, expected str input ('True' or 'False')" | |
| }, | |
| ) | |
| edge_unit_prediction: str = field( | |
| default="True", | |
| metadata={ | |
| "help": "Perform Edge Unit Prediction, expected str input ('True' or 'False')" | |
| }, | |
| ) | |
| duration_prediction: str = field( | |
| default="True", | |
| metadata={ | |
| "help": "Perform Duration Prediction, expected str input ('True' or 'False')" | |
| }, | |
| ) | |
| delayed_duration_target: str = field( | |
| default="True", | |
| metadata={ | |
| "help": "Perform Delayed Duration Prediction, expected str input ('True' or 'False')" | |
| "(default: 'True')" | |
| }, | |
| ) | |
| max_target_durations: Optional[int] = field( | |
| default=256, | |
| metadata={"help": "max duration considered (cut off to this value)"}, | |
| ) | |
| add_bos_token: bool = field( | |
| default=False, metadata={"help": "prepend beginning of sentence token (<s>)"} | |
| ) | |
| max_target_positions: Optional[int] = field( | |
| default=None, metadata={"help": "max number of tokens in the target sequence"} | |
| ) | |
| shorten_method: SHORTEN_METHOD_CHOICES = field( | |
| default="none", | |
| metadata={ | |
| "help": "if not none, shorten sequences that exceed --tokens-per-sample" | |
| }, | |
| ) | |
| shorten_data_split_list: str = field( | |
| default="", | |
| metadata={ | |
| "help": "comma-separated list of dataset splits to apply shortening to, " | |
| 'e.g., "train,valid" (default: all dataset splits)' | |
| }, | |
| ) | |
| # TODO common vars below add to parent | |
| seed: int = II("common.seed") | |
| dataset_impl: Optional[ChoiceEnum(get_available_dataset_impl())] = II( | |
| "dataset.dataset_impl" | |
| ) | |
| data_buffer_size: int = II("dataset.data_buffer_size") | |
| tpu: bool = II("common.tpu") | |
| class SpeechDLMTask(LegacyFairseqTask): | |
| """Task for the SpeechDLM model as described in the paper: | |
| https://arxiv.org/pdf/2203.16502.pdf | |
| It create a multi-channel dataset (SpeechDLMDataset) from multiple | |
| dictionaries. | |
| Args: | |
| dictionaries (Dict[str, ~fairseq.data.Dictionary]): the dictionaries for | |
| each input channel of the SpeechDLM model | |
| output_dictionaries (Dict[str, ~fairseq.data.Dictionary]): the dictionaries | |
| for the output of each channel of the SpeechDLM model. In most cases it | |
| will be the same as *dictionaries*. | |
| targets (List[str]): list of the target types that the SpeechDLM model | |
| should predict. Can be one of "next", "edge", "duration". | |
| Defaults to "next". | |
| .. note:: | |
| The SpeechDLM task is only compatible with | |
| :mod:`fairseq-train` and :mod:`fairseq-validate`. | |
| To generate new samples, please refer to example codes | |
| at examples/textless_nlp/dgslm . | |
| """ | |
| def __init__(self, args, dicts, output_dicts=None, targets=None): | |
| super().__init__(args) | |
| self.dicts = dicts | |
| self.output_dicts = output_dicts or dicts | |
| if targets is None: | |
| targets = ["next"] | |
| self.targets = targets | |
| self.channels = list(dicts.keys()) | |
| if args.channel_weights is not None: | |
| self.channel_weights = [float(w) for w in args.channel_weights.split(",")] | |
| else: | |
| self.channel_weights = [1.0 for _ in self.channels] | |
| assert len(self.channel_weights) == len( | |
| self.channels | |
| ), "number of channel_weights must be the same as number of channels" | |
| assert str(args.next_unit_prediction).lower() in [ | |
| "true", | |
| "false", | |
| ], f"Expected to be a string of boolean, found {args.next_unit_prediction}" | |
| assert str(args.edge_unit_prediction).lower() in [ | |
| "true", | |
| "false", | |
| ], f"Expected to be a string of boolean, found {args.edge_unit_prediction}" | |
| assert str(args.duration_prediction).lower() in [ | |
| "true", | |
| "false", | |
| ], f"Expected to be a string of boolean, found {args.duration_prediction}" | |
| assert str(args.delayed_duration_target).lower() in [ | |
| "true", | |
| "false", | |
| ], f"Expected to be a string of boolean, found {args.delayed_duration_target}" | |
| self.next_unit_prediction = bool( | |
| str(args.next_unit_prediction).lower() == "true" | |
| ) | |
| self.edge_unit_prediction = bool( | |
| str(args.edge_unit_prediction).lower() == "true" | |
| ) | |
| self.duration_prediction = bool(str(args.duration_prediction).lower() == "true") | |
| self.delayed_duration_target = bool( | |
| str(args.delayed_duration_target).lower() == "true" | |
| ) | |
| self.max_target_durations = args.max_target_durations | |
| def setup_dictionary(cls, args, **kwargs): | |
| """The dictionaries will be a dict over channel keys and values of type | |
| ~fairseq.data.Dictionary. | |
| """ | |
| paths = utils.split_paths(args.data) | |
| assert len(paths) > 0 | |
| data_path = paths[0] | |
| dicts = None | |
| output_dicts = None | |
| if args.channels is None: | |
| sorted_channels = sorted( | |
| name[5:-4] | |
| for name in os.listdir(data_path) | |
| if name[:5] == "dict." and name[-4:] == ".txt" | |
| ) | |
| else: | |
| sorted_channels = sorted(args.channels.split(",")) | |
| logger.info("channels: {}".format(sorted_channels)) | |
| # load dictionaries | |
| dicts = OrderedDict() | |
| output_dicts = OrderedDict() | |
| for channel in sorted_channels: | |
| dictionary = Dictionary.load( | |
| os.path.join(data_path, "dict.{}.txt".format(channel)) | |
| ) | |
| logger.info("[{}] dictionary: {} types".format(channel, len(dictionary))) | |
| output_dictionary = dictionary | |
| if args.output_dictionary_size >= 0: | |
| output_dictionary = TruncatedDictionary( | |
| dictionary, args.output_dictionary_size | |
| ) | |
| dicts[channel] = dictionary | |
| output_dicts[channel] = output_dictionary | |
| if len(dicts) > 0: | |
| assert dicts[channel].pad() == dicts[sorted_channels[0]].pad() | |
| assert dicts[channel].bos() == dicts[sorted_channels[0]].bos() | |
| assert dicts[channel].eos() == dicts[sorted_channels[0]].eos() | |
| assert dicts[channel].unk() == dicts[sorted_channels[0]].unk() | |
| return (dicts, output_dicts) | |
| def setup_task(cls, args, **kwargs): | |
| """Setup the task (e.g., load dictionaries). | |
| Args: | |
| args (argparse.Namespace): parsed command-line arguments | |
| """ | |
| dicts, output_dicts = cls.setup_dictionary(args, **kwargs) | |
| targets = [] | |
| if str(getattr(args, "next_unit_prediction", "false")).lower() == "true": | |
| targets.append("next") | |
| if str(getattr(args, "edge_unit_prediction", "false")).lower() == "true": | |
| targets.append("edge") | |
| if str(getattr(args, "duration_prediction", "false")).lower() == "true": | |
| targets.append("duration") | |
| if len(targets) == 0: | |
| # standard language modeling | |
| targets = ["next"] | |
| return cls(args, dicts, output_dicts, targets=targets) | |
| def build_model(self, args): | |
| model = super().build_model(args) | |
| for target in self.targets: | |
| if target not in model.supported_targets: | |
| raise ValueError("Unsupported SpeechDLM target: {}".format(target)) | |
| return model | |
| def load_dataset( | |
| self, split: str, epoch=1, combine=False, **kwargs | |
| ) -> SpeechDLMDataset: | |
| """Load a given dataset split. | |
| Args: | |
| split (str): name of the split (e.g., train, valid, test) | |
| """ | |
| paths = utils.split_paths(self.args.data) | |
| assert len(paths) > 0 | |
| data_path = paths[(epoch - 1) % len(paths)] | |
| channel_datasets = {} | |
| for channel in self.channels: | |
| split_path = os.path.join(data_path, split + "." + channel) | |
| dictionary = self.dicts[channel] | |
| output_dictionary = self.output_dicts[channel] | |
| dataset = data_utils.load_indexed_dataset( | |
| split_path, dictionary, self.args.dataset_impl, combine=combine | |
| ) | |
| if dataset is None: | |
| raise FileNotFoundError( | |
| "[{}] Dataset not found: {} ({})".format(channel, split, split_path) | |
| ) | |
| dataset = maybe_shorten_dataset( | |
| dataset, | |
| split, | |
| self.args.shorten_data_split_list, | |
| self.args.shorten_method, | |
| self.args.tokens_per_sample, | |
| self.args.seed, | |
| ) | |
| dataset = TokenBlockDataset( | |
| dataset, | |
| dataset.sizes, | |
| self.args.tokens_per_sample, | |
| pad=dictionary.pad(), | |
| eos=dictionary.eos(), | |
| break_mode=self.args.sample_break_mode, | |
| include_targets=True, | |
| ) | |
| add_eos_for_other_targets = ( | |
| self.args.sample_break_mode is not None | |
| and self.args.sample_break_mode != "none" | |
| ) | |
| channel_datasets[channel] = MonolingualDataset( | |
| dataset=dataset, | |
| sizes=dataset.sizes, | |
| src_vocab=dictionary, | |
| tgt_vocab=output_dictionary, | |
| add_eos_for_other_targets=add_eos_for_other_targets, | |
| shuffle=False, | |
| targets=["future"], | |
| add_bos_token=self.args.add_bos_token, | |
| ) | |
| self.datasets[split] = SpeechDLMDataset( | |
| datasets=channel_datasets, | |
| targets=self.targets, | |
| max_target_durations=self.max_target_durations, | |
| shuffle=True, | |
| ) | |
| def build_dataset_for_inference(self, src_tokens, src_lengths, **kwargs): | |
| """ | |
| Generate batches for inference. We prepend an eos token to src_tokens | |
| (or bos if `--add-bos-token` is set) and we append a <pad> to target. | |
| This is convenient both for generation with a prefix and LM scoring. | |
| """ | |
| src_datasets = {} | |
| tgt_datasets = {} | |
| for channel in src_tokens[0]: | |
| dataset = StripTokenDataset( | |
| TokenBlockDataset( | |
| [src_tokens[i][channel] for i in range(len(src_tokens))], | |
| src_lengths, | |
| block_size=None, # ignored for "eos" break mode | |
| pad=self.source_dictionaries[channel].pad(), | |
| eos=self.source_dictionaries[channel].eos(), | |
| break_mode="eos", | |
| ), | |
| # remove eos from (end of) target sequence | |
| self.source_dictionaries[channel].eos(), | |
| ) | |
| src_dataset = PrependTokenDataset( | |
| dataset, | |
| token=( | |
| self.source_dictionaries[channel].bos() | |
| if getattr(self.args, "add_bos_token", False) | |
| else self.source_dictionaries[channel].eos() | |
| ), | |
| ) | |
| tgt_dataset = AppendTokenDataset( | |
| dataset, token=self.source_dictionaries[channel].pad() | |
| ) | |
| src_datasets[channel] = src_dataset | |
| tgt_datasets[channel] = tgt_dataset | |
| return NestedDictionaryDataset( | |
| { | |
| "id": IdDataset(), | |
| "net_input": { | |
| "src_tokens": OrderedDict( | |
| [ | |
| ( | |
| channel, | |
| PadDataset( | |
| src_datasets[channel], | |
| pad_idx=self.source_dictionaries[channel].pad(), | |
| left_pad=False, | |
| ), | |
| ) | |
| for channel in src_datasets | |
| ] | |
| ), | |
| "src_lengths": NumelDataset( | |
| next(iter(src_datasets.values())), reduce=False | |
| ), | |
| }, | |
| "target": OrderedDict( | |
| [ | |
| ( | |
| channel, | |
| PadDataset( | |
| tgt_datasets[channel], | |
| pad_idx=self.source_dictionaries[channel].pad(), | |
| left_pad=False, | |
| ), | |
| ) | |
| for channel in tgt_datasets | |
| ] | |
| ), | |
| }, | |
| sizes=[np.array(src_lengths)], | |
| ) | |
| def inference_step( | |
| self, generator, models, sample, prefix_tokens=None, constraints=None | |
| ): | |
| with torch.no_grad(): | |
| # Generation will always be conditioned on bos_token | |
| if getattr(self.args, "add_bos_token", False): | |
| bos_token = self.source_dictionary.bos() | |
| else: | |
| bos_token = self.source_dictionary.eos() | |
| if constraints is not None: | |
| raise NotImplementedError( | |
| "Constrained decoding with the SpeechDLM task is not supported" | |
| ) | |
| # SequenceGenerator doesn't use src_tokens directly, we need to | |
| # pass the `prefix_tokens` argument instead | |
| if prefix_tokens is None: | |
| prefix_tokens = {} | |
| for channel in sample["net_input"]["src_tokens"]: | |
| if sample["net_input"]["src_tokens"][channel].nelement(): | |
| prefix_tokens_channel = sample["net_input"]["src_tokens"][ | |
| channel | |
| ] | |
| if prefix_tokens_channel[:, 0].eq(bos_token).all(): | |
| prefix_tokens_channel = prefix_tokens_channel[:, 1:] | |
| prefix_tokens[channel] = prefix_tokens_channel | |
| else: | |
| prefix_tokens = None | |
| break | |
| return generator.generate( | |
| models, sample, prefix_tokens=prefix_tokens, bos_token=bos_token | |
| ) | |
| def eval_lm_dataloader( | |
| self, | |
| dataset, | |
| max_tokens: Optional[int] = 36000, | |
| batch_size: Optional[int] = None, | |
| max_positions: Optional[int] = None, | |
| num_shards: int = 1, | |
| shard_id: int = 0, | |
| num_workers: int = 1, | |
| data_buffer_size: int = 10, | |
| # ensures that every evaluated token has access to a context of at least | |
| # this size, if possible | |
| context_window: int = 0, | |
| ): | |
| if context_window > 0: | |
| dataset = LMContextWindowDataset( | |
| dataset=dataset, | |
| tokens_per_sample=self.args.tokens_per_sample, | |
| context_window=context_window, | |
| pad_idx=self.source_dictionary.pad(), | |
| ) | |
| return self.get_batch_iterator( | |
| dataset=dataset, | |
| max_tokens=max_tokens, | |
| max_sentences=batch_size, | |
| max_positions=max_positions, | |
| ignore_invalid_inputs=True, | |
| num_shards=num_shards, | |
| shard_id=shard_id, | |
| num_workers=num_workers, | |
| data_buffer_size=data_buffer_size, | |
| ).next_epoch_itr(shuffle=False) | |
| def source_dictionary(self): | |
| """Return the :class:`~fairseq.data.Dictionary` for the language | |
| model.""" | |
| return self.dicts[self.channels[0]] | |
| def target_dictionary(self): | |
| """Return the :class:`~fairseq.data.Dictionary` for the language | |
| model.""" | |
| return self.output_dicts[self.channels[0]] | |
| def source_dictionaries(self): | |
| """Return the dict of :class:`~fairseq.data.Dictionary` for the | |
| multichannel language model.""" | |
| return self.dicts | |
| def target_dictionaries(self): | |
| """Return the dict of :class:`~fairseq.data.Dictionary` for the | |
| multichannel language model.""" | |
| return self.output_dicts | |
| def build_generator(self, models, args, extra_gen_cls_kwargs=None): | |
| from fairseq.models.speech_dlm.sequence_generator import ( | |
| multichannel_search, | |
| MultichannelSequenceGenerator, | |
| ) | |
| # Choose search strategy. Defaults to Beam Search. | |
| sampling = getattr(args, "sampling", False) | |
| sampling_topk = getattr(args, "sampling_topk", -1) | |
| sampling_topp = getattr(args, "sampling_topp", -1.0) | |
| assert ( | |
| sampling_topk < 0 or sampling | |
| ), "--sampling-topk requires sampling (not beam search)" | |
| assert ( | |
| sampling_topp < 0 or sampling | |
| ), "--sampling-topp requires sampling (not beam search)" | |
| if sampling: | |
| search_strategy = multichannel_search.ContiguousMultichannelSampling( | |
| self.target_dictionaries, sampling_topk, sampling_topp | |
| ) | |
| else: | |
| search_strategy = multichannel_search.ContiguousMultichannelBeamSearch( | |
| self.target_dictionaries | |
| ) | |
| extra_gen_cls_kwargs = extra_gen_cls_kwargs or {} | |
| return MultichannelSequenceGenerator( | |
| models, | |
| self.target_dictionaries, | |
| beam_size=getattr(args, "beam", 5), | |
| max_len_a=getattr(args, "max_len_a", 0), | |
| max_len_b=getattr(args, "max_len_b", 500), | |
| min_len=getattr(args, "min_len", 1), | |
| normalize_scores=(not getattr(args, "unnormalized", False)), | |
| len_penalty=getattr(args, "lenpen", 1), | |
| unk_penalty=getattr(args, "unkpen", 0), | |
| temperature=getattr(args, "temperature", 1.0), | |
| match_source_len=getattr(args, "match_source_len", False), | |
| no_repeat_ngram_size=getattr(args, "no_repeat_ngram_size", 0), | |
| search_strategy=search_strategy, | |
| duration_temperature=getattr(args, "duration_temperature", 1.0), | |
| **extra_gen_cls_kwargs, | |
| ) | |