Spaces:
Runtime error
Runtime error
File size: 21,187 Bytes
85ba398 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import logging
import os
from dataclasses import dataclass, field
from typing import Optional
from collections import OrderedDict
import numpy as np
import torch
from fairseq import utils
from fairseq.data import (
AppendTokenDataset,
Dictionary,
IdDataset,
LMContextWindowDataset,
MonolingualDataset,
NestedDictionaryDataset,
NumelDataset,
PadDataset,
PrependTokenDataset,
SpeechDLMDataset,
StripTokenDataset,
TokenBlockDataset,
TruncatedDictionary,
data_utils,
)
from fairseq.data.indexed_dataset import get_available_dataset_impl
from fairseq.data.shorten_dataset import maybe_shorten_dataset
from fairseq.dataclass import ChoiceEnum, FairseqDataclass
from fairseq.tasks import LegacyFairseqTask, register_task
from omegaconf import II
SAMPLE_BREAK_MODE_CHOICES = ChoiceEnum(["none", "complete", "complete_doc", "eos"])
SHORTEN_METHOD_CHOICES = ChoiceEnum(["none", "truncate", "random_crop"])
logger = logging.getLogger(__name__)
@dataclass
class SpeechDLMConfig(FairseqDataclass):
data: Optional[str] = field(
default=None, metadata={"help": "path to data directory"}
)
channels: Optional[str] = field(
default=None,
metadata={
"help": 'comma-separated list of channels to load e.g., "unitA,unitB"'
"(default: load all possible channels in the data path)"
},
)
channel_weights: Optional[str] = field(
default=None,
metadata={
"help": "comma-separated list of weights for different losses"
"(default: None, which means all losses are treated equally)"
},
)
sample_break_mode: SAMPLE_BREAK_MODE_CHOICES = field(
default="none",
metadata={
"help": 'If omitted or "none", fills each sample with tokens-per-sample '
'tokens. If set to "complete", splits samples only at the end '
"of sentence, but may include multiple sentences per sample. "
'"complete_doc" is similar but respects doc boundaries. '
'If set to "eos", includes only one sentence per sample.'
},
)
tokens_per_sample: int = field(
default=1024,
metadata={"help": "max number of tokens per sample for LM dataset"},
)
output_dictionary_size: int = field(
default=-1, metadata={"help": "limit the size of output dictionary"}
)
# str type is a workaround to put **default=True** here
next_unit_prediction: str = field(
default="False",
metadata={
"help": "Perform Next Unit Prediction, expected str input ('True' or 'False')"
},
)
edge_unit_prediction: str = field(
default="True",
metadata={
"help": "Perform Edge Unit Prediction, expected str input ('True' or 'False')"
},
)
duration_prediction: str = field(
default="True",
metadata={
"help": "Perform Duration Prediction, expected str input ('True' or 'False')"
},
)
delayed_duration_target: str = field(
default="True",
metadata={
"help": "Perform Delayed Duration Prediction, expected str input ('True' or 'False')"
"(default: 'True')"
},
)
max_target_durations: Optional[int] = field(
default=256,
metadata={"help": "max duration considered (cut off to this value)"},
)
add_bos_token: bool = field(
default=False, metadata={"help": "prepend beginning of sentence token (<s>)"}
)
max_target_positions: Optional[int] = field(
default=None, metadata={"help": "max number of tokens in the target sequence"}
)
shorten_method: SHORTEN_METHOD_CHOICES = field(
default="none",
metadata={
"help": "if not none, shorten sequences that exceed --tokens-per-sample"
},
)
shorten_data_split_list: str = field(
default="",
metadata={
"help": "comma-separated list of dataset splits to apply shortening to, "
'e.g., "train,valid" (default: all dataset splits)'
},
)
# TODO common vars below add to parent
seed: int = II("common.seed")
dataset_impl: Optional[ChoiceEnum(get_available_dataset_impl())] = II(
"dataset.dataset_impl"
)
data_buffer_size: int = II("dataset.data_buffer_size")
tpu: bool = II("common.tpu")
@register_task("speech_dlm_task", dataclass=SpeechDLMConfig)
class SpeechDLMTask(LegacyFairseqTask):
"""Task for the SpeechDLM model as described in the paper:
https://arxiv.org/pdf/2203.16502.pdf
It create a multi-channel dataset (SpeechDLMDataset) from multiple
dictionaries.
Args:
dictionaries (Dict[str, ~fairseq.data.Dictionary]): the dictionaries for
each input channel of the SpeechDLM model
output_dictionaries (Dict[str, ~fairseq.data.Dictionary]): the dictionaries
for the output of each channel of the SpeechDLM model. In most cases it
will be the same as *dictionaries*.
targets (List[str]): list of the target types that the SpeechDLM model
should predict. Can be one of "next", "edge", "duration".
Defaults to "next".
.. note::
The SpeechDLM task is only compatible with
:mod:`fairseq-train` and :mod:`fairseq-validate`.
To generate new samples, please refer to example codes
at examples/textless_nlp/dgslm .
"""
def __init__(self, args, dicts, output_dicts=None, targets=None):
super().__init__(args)
self.dicts = dicts
self.output_dicts = output_dicts or dicts
if targets is None:
targets = ["next"]
self.targets = targets
self.channels = list(dicts.keys())
if args.channel_weights is not None:
self.channel_weights = [float(w) for w in args.channel_weights.split(",")]
else:
self.channel_weights = [1.0 for _ in self.channels]
assert len(self.channel_weights) == len(
self.channels
), "number of channel_weights must be the same as number of channels"
assert str(args.next_unit_prediction).lower() in [
"true",
"false",
], f"Expected to be a string of boolean, found {args.next_unit_prediction}"
assert str(args.edge_unit_prediction).lower() in [
"true",
"false",
], f"Expected to be a string of boolean, found {args.edge_unit_prediction}"
assert str(args.duration_prediction).lower() in [
"true",
"false",
], f"Expected to be a string of boolean, found {args.duration_prediction}"
assert str(args.delayed_duration_target).lower() in [
"true",
"false",
], f"Expected to be a string of boolean, found {args.delayed_duration_target}"
self.next_unit_prediction = bool(
str(args.next_unit_prediction).lower() == "true"
)
self.edge_unit_prediction = bool(
str(args.edge_unit_prediction).lower() == "true"
)
self.duration_prediction = bool(str(args.duration_prediction).lower() == "true")
self.delayed_duration_target = bool(
str(args.delayed_duration_target).lower() == "true"
)
self.max_target_durations = args.max_target_durations
@classmethod
def setup_dictionary(cls, args, **kwargs):
"""The dictionaries will be a dict over channel keys and values of type
~fairseq.data.Dictionary.
"""
paths = utils.split_paths(args.data)
assert len(paths) > 0
data_path = paths[0]
dicts = None
output_dicts = None
if args.channels is None:
sorted_channels = sorted(
name[5:-4]
for name in os.listdir(data_path)
if name[:5] == "dict." and name[-4:] == ".txt"
)
else:
sorted_channels = sorted(args.channels.split(","))
logger.info("channels: {}".format(sorted_channels))
# load dictionaries
dicts = OrderedDict()
output_dicts = OrderedDict()
for channel in sorted_channels:
dictionary = Dictionary.load(
os.path.join(data_path, "dict.{}.txt".format(channel))
)
logger.info("[{}] dictionary: {} types".format(channel, len(dictionary)))
output_dictionary = dictionary
if args.output_dictionary_size >= 0:
output_dictionary = TruncatedDictionary(
dictionary, args.output_dictionary_size
)
dicts[channel] = dictionary
output_dicts[channel] = output_dictionary
if len(dicts) > 0:
assert dicts[channel].pad() == dicts[sorted_channels[0]].pad()
assert dicts[channel].bos() == dicts[sorted_channels[0]].bos()
assert dicts[channel].eos() == dicts[sorted_channels[0]].eos()
assert dicts[channel].unk() == dicts[sorted_channels[0]].unk()
return (dicts, output_dicts)
@classmethod
def setup_task(cls, args, **kwargs):
"""Setup the task (e.g., load dictionaries).
Args:
args (argparse.Namespace): parsed command-line arguments
"""
dicts, output_dicts = cls.setup_dictionary(args, **kwargs)
targets = []
if str(getattr(args, "next_unit_prediction", "false")).lower() == "true":
targets.append("next")
if str(getattr(args, "edge_unit_prediction", "false")).lower() == "true":
targets.append("edge")
if str(getattr(args, "duration_prediction", "false")).lower() == "true":
targets.append("duration")
if len(targets) == 0:
# standard language modeling
targets = ["next"]
return cls(args, dicts, output_dicts, targets=targets)
def build_model(self, args):
model = super().build_model(args)
for target in self.targets:
if target not in model.supported_targets:
raise ValueError("Unsupported SpeechDLM target: {}".format(target))
return model
def load_dataset(
self, split: str, epoch=1, combine=False, **kwargs
) -> SpeechDLMDataset:
"""Load a given dataset split.
Args:
split (str): name of the split (e.g., train, valid, test)
"""
paths = utils.split_paths(self.args.data)
assert len(paths) > 0
data_path = paths[(epoch - 1) % len(paths)]
channel_datasets = {}
for channel in self.channels:
split_path = os.path.join(data_path, split + "." + channel)
dictionary = self.dicts[channel]
output_dictionary = self.output_dicts[channel]
dataset = data_utils.load_indexed_dataset(
split_path, dictionary, self.args.dataset_impl, combine=combine
)
if dataset is None:
raise FileNotFoundError(
"[{}] Dataset not found: {} ({})".format(channel, split, split_path)
)
dataset = maybe_shorten_dataset(
dataset,
split,
self.args.shorten_data_split_list,
self.args.shorten_method,
self.args.tokens_per_sample,
self.args.seed,
)
dataset = TokenBlockDataset(
dataset,
dataset.sizes,
self.args.tokens_per_sample,
pad=dictionary.pad(),
eos=dictionary.eos(),
break_mode=self.args.sample_break_mode,
include_targets=True,
)
add_eos_for_other_targets = (
self.args.sample_break_mode is not None
and self.args.sample_break_mode != "none"
)
channel_datasets[channel] = MonolingualDataset(
dataset=dataset,
sizes=dataset.sizes,
src_vocab=dictionary,
tgt_vocab=output_dictionary,
add_eos_for_other_targets=add_eos_for_other_targets,
shuffle=False,
targets=["future"],
add_bos_token=self.args.add_bos_token,
)
self.datasets[split] = SpeechDLMDataset(
datasets=channel_datasets,
targets=self.targets,
max_target_durations=self.max_target_durations,
shuffle=True,
)
def build_dataset_for_inference(self, src_tokens, src_lengths, **kwargs):
"""
Generate batches for inference. We prepend an eos token to src_tokens
(or bos if `--add-bos-token` is set) and we append a <pad> to target.
This is convenient both for generation with a prefix and LM scoring.
"""
src_datasets = {}
tgt_datasets = {}
for channel in src_tokens[0]:
dataset = StripTokenDataset(
TokenBlockDataset(
[src_tokens[i][channel] for i in range(len(src_tokens))],
src_lengths,
block_size=None, # ignored for "eos" break mode
pad=self.source_dictionaries[channel].pad(),
eos=self.source_dictionaries[channel].eos(),
break_mode="eos",
),
# remove eos from (end of) target sequence
self.source_dictionaries[channel].eos(),
)
src_dataset = PrependTokenDataset(
dataset,
token=(
self.source_dictionaries[channel].bos()
if getattr(self.args, "add_bos_token", False)
else self.source_dictionaries[channel].eos()
),
)
tgt_dataset = AppendTokenDataset(
dataset, token=self.source_dictionaries[channel].pad()
)
src_datasets[channel] = src_dataset
tgt_datasets[channel] = tgt_dataset
return NestedDictionaryDataset(
{
"id": IdDataset(),
"net_input": {
"src_tokens": OrderedDict(
[
(
channel,
PadDataset(
src_datasets[channel],
pad_idx=self.source_dictionaries[channel].pad(),
left_pad=False,
),
)
for channel in src_datasets
]
),
"src_lengths": NumelDataset(
next(iter(src_datasets.values())), reduce=False
),
},
"target": OrderedDict(
[
(
channel,
PadDataset(
tgt_datasets[channel],
pad_idx=self.source_dictionaries[channel].pad(),
left_pad=False,
),
)
for channel in tgt_datasets
]
),
},
sizes=[np.array(src_lengths)],
)
def inference_step(
self, generator, models, sample, prefix_tokens=None, constraints=None
):
with torch.no_grad():
# Generation will always be conditioned on bos_token
if getattr(self.args, "add_bos_token", False):
bos_token = self.source_dictionary.bos()
else:
bos_token = self.source_dictionary.eos()
if constraints is not None:
raise NotImplementedError(
"Constrained decoding with the SpeechDLM task is not supported"
)
# SequenceGenerator doesn't use src_tokens directly, we need to
# pass the `prefix_tokens` argument instead
if prefix_tokens is None:
prefix_tokens = {}
for channel in sample["net_input"]["src_tokens"]:
if sample["net_input"]["src_tokens"][channel].nelement():
prefix_tokens_channel = sample["net_input"]["src_tokens"][
channel
]
if prefix_tokens_channel[:, 0].eq(bos_token).all():
prefix_tokens_channel = prefix_tokens_channel[:, 1:]
prefix_tokens[channel] = prefix_tokens_channel
else:
prefix_tokens = None
break
return generator.generate(
models, sample, prefix_tokens=prefix_tokens, bos_token=bos_token
)
def eval_lm_dataloader(
self,
dataset,
max_tokens: Optional[int] = 36000,
batch_size: Optional[int] = None,
max_positions: Optional[int] = None,
num_shards: int = 1,
shard_id: int = 0,
num_workers: int = 1,
data_buffer_size: int = 10,
# ensures that every evaluated token has access to a context of at least
# this size, if possible
context_window: int = 0,
):
if context_window > 0:
dataset = LMContextWindowDataset(
dataset=dataset,
tokens_per_sample=self.args.tokens_per_sample,
context_window=context_window,
pad_idx=self.source_dictionary.pad(),
)
return self.get_batch_iterator(
dataset=dataset,
max_tokens=max_tokens,
max_sentences=batch_size,
max_positions=max_positions,
ignore_invalid_inputs=True,
num_shards=num_shards,
shard_id=shard_id,
num_workers=num_workers,
data_buffer_size=data_buffer_size,
).next_epoch_itr(shuffle=False)
@property
def source_dictionary(self):
"""Return the :class:`~fairseq.data.Dictionary` for the language
model."""
return self.dicts[self.channels[0]]
@property
def target_dictionary(self):
"""Return the :class:`~fairseq.data.Dictionary` for the language
model."""
return self.output_dicts[self.channels[0]]
@property
def source_dictionaries(self):
"""Return the dict of :class:`~fairseq.data.Dictionary` for the
multichannel language model."""
return self.dicts
@property
def target_dictionaries(self):
"""Return the dict of :class:`~fairseq.data.Dictionary` for the
multichannel language model."""
return self.output_dicts
def build_generator(self, models, args, extra_gen_cls_kwargs=None):
from fairseq.models.speech_dlm.sequence_generator import (
multichannel_search,
MultichannelSequenceGenerator,
)
# Choose search strategy. Defaults to Beam Search.
sampling = getattr(args, "sampling", False)
sampling_topk = getattr(args, "sampling_topk", -1)
sampling_topp = getattr(args, "sampling_topp", -1.0)
assert (
sampling_topk < 0 or sampling
), "--sampling-topk requires sampling (not beam search)"
assert (
sampling_topp < 0 or sampling
), "--sampling-topp requires sampling (not beam search)"
if sampling:
search_strategy = multichannel_search.ContiguousMultichannelSampling(
self.target_dictionaries, sampling_topk, sampling_topp
)
else:
search_strategy = multichannel_search.ContiguousMultichannelBeamSearch(
self.target_dictionaries
)
extra_gen_cls_kwargs = extra_gen_cls_kwargs or {}
return MultichannelSequenceGenerator(
models,
self.target_dictionaries,
beam_size=getattr(args, "beam", 5),
max_len_a=getattr(args, "max_len_a", 0),
max_len_b=getattr(args, "max_len_b", 500),
min_len=getattr(args, "min_len", 1),
normalize_scores=(not getattr(args, "unnormalized", False)),
len_penalty=getattr(args, "lenpen", 1),
unk_penalty=getattr(args, "unkpen", 0),
temperature=getattr(args, "temperature", 1.0),
match_source_len=getattr(args, "match_source_len", False),
no_repeat_ngram_size=getattr(args, "no_repeat_ngram_size", 0),
search_strategy=search_strategy,
duration_temperature=getattr(args, "duration_temperature", 1.0),
**extra_gen_cls_kwargs,
)
|