Spaces:
Sleeping
Sleeping
| import math | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from einops import rearrange, repeat, einsum | |
| from layers.Embed import DataEmbedding | |
| class Model(nn.Module): | |
| """ | |
| Mamba, linear-time sequence modeling with selective state spaces O(L) | |
| Paper link: https://arxiv.org/abs/2312.00752 | |
| Implementation refernce: https://github.com/johnma2006/mamba-minimal/ | |
| """ | |
| def __init__(self, configs): | |
| super(Model, self).__init__() | |
| self.task_name = configs.task_name | |
| self.pred_len = configs.pred_len | |
| self.d_inner = configs.d_model * configs.expand | |
| self.dt_rank = math.ceil(configs.d_model / 16) | |
| self.embedding = DataEmbedding(configs.enc_in, configs.d_model, configs.embed, configs.freq, configs.dropout) | |
| self.layers = nn.ModuleList([ResidualBlock(configs, self.d_inner, self.dt_rank) for _ in range(configs.e_layers)]) | |
| self.norm = RMSNorm(configs.d_model) | |
| self.out_layer = nn.Linear(configs.d_model, configs.c_out, bias=False) | |
| def forecast(self, x_enc, x_mark_enc): | |
| mean_enc = x_enc.mean(1, keepdim=True).detach() | |
| x_enc = x_enc - mean_enc | |
| std_enc = torch.sqrt(torch.var(x_enc, dim=1, keepdim=True, unbiased=False) + 1e-5).detach() | |
| x_enc = x_enc / std_enc | |
| x = self.embedding(x_enc, x_mark_enc) | |
| for layer in self.layers: | |
| x = layer(x) | |
| x = self.norm(x) | |
| x_out = self.out_layer(x) | |
| x_out = x_out * std_enc + mean_enc | |
| return x_out | |
| def forward(self, x_enc, x_mark_enc, x_dec, x_mark_dec, mask=None): | |
| if self.task_name in ['short_term_forecast', 'long_term_forecast']: | |
| x_out = self.forecast(x_enc, x_mark_enc) | |
| return x_out[:, -self.pred_len:, :] | |
| class ResidualBlock(nn.Module): | |
| def __init__(self, configs, d_inner, dt_rank): | |
| super(ResidualBlock, self).__init__() | |
| self.mixer = MambaBlock(configs, d_inner, dt_rank) | |
| self.norm = RMSNorm(configs.d_model) | |
| def forward(self, x): | |
| output = self.mixer(self.norm(x)) + x | |
| return output | |
| class MambaBlock(nn.Module): | |
| def __init__(self, configs, d_inner, dt_rank): | |
| super(MambaBlock, self).__init__() | |
| self.d_inner = d_inner | |
| self.dt_rank = dt_rank | |
| self.in_proj = nn.Linear(configs.d_model, self.d_inner * 2, bias=False) | |
| self.conv1d = nn.Conv1d( | |
| in_channels = self.d_inner, | |
| out_channels = self.d_inner, | |
| bias = True, | |
| kernel_size = configs.d_conv, | |
| padding = configs.d_conv - 1, | |
| groups = self.d_inner | |
| ) | |
| # takes in x and outputs the input-specific delta, B, C | |
| self.x_proj = nn.Linear(self.d_inner, self.dt_rank + configs.d_ff * 2, bias=False) | |
| # projects delta | |
| self.dt_proj = nn.Linear(self.dt_rank, self.d_inner, bias=True) | |
| A = repeat(torch.arange(1, configs.d_ff + 1), "n -> d n", d=self.d_inner) | |
| self.A_log = nn.Parameter(torch.log(A)) | |
| self.D = nn.Parameter(torch.ones(self.d_inner)) | |
| self.out_proj = nn.Linear(self.d_inner, configs.d_model, bias=False) | |
| def forward(self, x): | |
| """ | |
| Figure 3 in Section 3.4 in the paper | |
| """ | |
| (b, l, d) = x.shape | |
| x_and_res = self.in_proj(x) # [B, L, 2 * d_inner] | |
| (x, res) = x_and_res.split(split_size=[self.d_inner, self.d_inner], dim=-1) | |
| x = rearrange(x, "b l d -> b d l") | |
| x = self.conv1d(x)[:, :, :l] | |
| x = rearrange(x, "b d l -> b l d") | |
| x = F.silu(x) | |
| y = self.ssm(x) | |
| y = y * F.silu(res) | |
| output = self.out_proj(y) | |
| return output | |
| def ssm(self, x): | |
| """ | |
| Algorithm 2 in Section 3.2 in the paper | |
| """ | |
| (d_in, n) = self.A_log.shape | |
| A = -torch.exp(self.A_log.float()) # [d_in, n] | |
| D = self.D.float() # [d_in] | |
| x_dbl = self.x_proj(x) # [B, L, d_rank + 2 * d_ff] | |
| (delta, B, C) = x_dbl.split(split_size=[self.dt_rank, n, n], dim=-1) # delta: [B, L, d_rank]; B, C: [B, L, n] | |
| delta = F.softplus(self.dt_proj(delta)) # [B, L, d_in] | |
| y = self.selective_scan(x, delta, A, B, C, D) | |
| return y | |
| def selective_scan(self, u, delta, A, B, C, D): | |
| (b, l, d_in) = u.shape | |
| n = A.shape[1] | |
| deltaA = torch.exp(einsum(delta, A, "b l d, d n -> b l d n")) # A is discretized using zero-order hold (ZOH) discretization | |
| deltaB_u = einsum(delta, B, u, "b l d, b l n, b l d -> b l d n") # B is discretized using a simplified Euler discretization instead of ZOH. From a discussion with authors: "A is the more important term and the performance doesn't change much with the simplification on B" | |
| # selective scan, sequential instead of parallel | |
| x = torch.zeros((b, d_in, n), device=deltaA.device) | |
| ys = [] | |
| for i in range(l): | |
| x = deltaA[:, i] * x + deltaB_u[:, i] | |
| y = einsum(x, C[:, i, :], "b d n, b n -> b d") | |
| ys.append(y) | |
| y = torch.stack(ys, dim=1) # [B, L, d_in] | |
| y = y + u * D | |
| return y | |
| class RMSNorm(nn.Module): | |
| def __init__(self, d_model, eps=1e-5): | |
| super(RMSNorm, self).__init__() | |
| self.eps = eps | |
| self.weight = nn.Parameter(torch.ones(d_model)) | |
| def forward(self, x): | |
| output = x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) * self.weight | |
| return output | |