File size: 5,493 Bytes
e1ccef5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import math

import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange, repeat, einsum

from layers.Embed import DataEmbedding


class Model(nn.Module):
    """
    Mamba, linear-time sequence modeling with selective state spaces O(L)
    Paper link: https://arxiv.org/abs/2312.00752
    Implementation refernce: https://github.com/johnma2006/mamba-minimal/
    """

    def __init__(self, configs):
        super(Model, self).__init__()
        self.task_name = configs.task_name
        self.pred_len = configs.pred_len

        self.d_inner = configs.d_model * configs.expand
        self.dt_rank = math.ceil(configs.d_model / 16)

        self.embedding = DataEmbedding(configs.enc_in, configs.d_model, configs.embed, configs.freq, configs.dropout)

        self.layers = nn.ModuleList([ResidualBlock(configs, self.d_inner, self.dt_rank) for _ in range(configs.e_layers)])
        self.norm = RMSNorm(configs.d_model)

        self.out_layer = nn.Linear(configs.d_model, configs.c_out, bias=False)

    def forecast(self, x_enc, x_mark_enc):
        mean_enc = x_enc.mean(1, keepdim=True).detach()
        x_enc = x_enc - mean_enc
        std_enc = torch.sqrt(torch.var(x_enc, dim=1, keepdim=True, unbiased=False) + 1e-5).detach()
        x_enc = x_enc / std_enc

        x = self.embedding(x_enc, x_mark_enc)
        for layer in self.layers:
            x = layer(x)

        x = self.norm(x)
        x_out = self.out_layer(x)

        x_out = x_out * std_enc + mean_enc
        return x_out

    def forward(self, x_enc, x_mark_enc, x_dec, x_mark_dec, mask=None):
        if self.task_name in ['short_term_forecast', 'long_term_forecast']:
            x_out = self.forecast(x_enc, x_mark_enc)
            return x_out[:, -self.pred_len:, :]


class ResidualBlock(nn.Module):
    def __init__(self, configs, d_inner, dt_rank):
        super(ResidualBlock, self).__init__()
        
        self.mixer = MambaBlock(configs, d_inner, dt_rank)
        self.norm = RMSNorm(configs.d_model)

    def forward(self, x):
        output = self.mixer(self.norm(x)) + x
        return output

class MambaBlock(nn.Module):
    def __init__(self, configs, d_inner, dt_rank):
        super(MambaBlock, self).__init__()
        self.d_inner = d_inner
        self.dt_rank = dt_rank

        self.in_proj = nn.Linear(configs.d_model, self.d_inner * 2, bias=False)
        
        self.conv1d = nn.Conv1d(
            in_channels = self.d_inner,
            out_channels = self.d_inner,
            bias = True,
            kernel_size = configs.d_conv,
            padding = configs.d_conv - 1,
            groups = self.d_inner
        )

        # takes in x and outputs the input-specific delta, B, C
        self.x_proj = nn.Linear(self.d_inner, self.dt_rank + configs.d_ff * 2, bias=False)

        # projects delta
        self.dt_proj = nn.Linear(self.dt_rank, self.d_inner, bias=True)

        A = repeat(torch.arange(1, configs.d_ff + 1), "n -> d n", d=self.d_inner)
        self.A_log = nn.Parameter(torch.log(A))
        self.D = nn.Parameter(torch.ones(self.d_inner))

        self.out_proj = nn.Linear(self.d_inner, configs.d_model, bias=False)

    def forward(self, x):
        """
        Figure 3 in Section 3.4 in the paper
        """
        (b, l, d) = x.shape

        x_and_res = self.in_proj(x) # [B, L, 2 * d_inner]
        (x, res) = x_and_res.split(split_size=[self.d_inner, self.d_inner], dim=-1)

        x = rearrange(x, "b l d -> b d l")
        x = self.conv1d(x)[:, :, :l]
        x = rearrange(x, "b d l -> b l d")

        x = F.silu(x)

        y = self.ssm(x)
        y = y * F.silu(res)

        output = self.out_proj(y)
        return output


    def ssm(self, x):
        """
        Algorithm 2 in Section 3.2 in the paper
        """
        
        (d_in, n) = self.A_log.shape

        A = -torch.exp(self.A_log.float()) # [d_in, n]
        D = self.D.float() # [d_in]

        x_dbl = self.x_proj(x) # [B, L, d_rank + 2 * d_ff]
        (delta, B, C) = x_dbl.split(split_size=[self.dt_rank, n, n], dim=-1) # delta: [B, L, d_rank]; B, C: [B, L, n]
        delta = F.softplus(self.dt_proj(delta)) # [B, L, d_in]
        y = self.selective_scan(x, delta, A, B, C, D)

        return y

    def selective_scan(self, u, delta, A, B, C, D):
        (b, l, d_in) = u.shape
        n = A.shape[1]

        deltaA = torch.exp(einsum(delta, A, "b l d, d n -> b l d n")) # A is discretized using zero-order hold (ZOH) discretization
        deltaB_u = einsum(delta, B, u, "b l d, b l n, b l d -> b l d n") # B is discretized using a simplified Euler discretization instead of ZOH. From a discussion with authors: "A is the more important term and the performance doesn't change much with the simplification on B"

        # selective scan, sequential instead of parallel
        x = torch.zeros((b, d_in, n), device=deltaA.device)
        ys = []
        for i in range(l):
            x = deltaA[:, i] * x + deltaB_u[:, i]
            y = einsum(x, C[:, i, :], "b d n, b n -> b d")
            ys.append(y)

        y = torch.stack(ys, dim=1) # [B, L, d_in]
        y = y + u * D

        return y

class RMSNorm(nn.Module):
    def __init__(self, d_model, eps=1e-5):
        super(RMSNorm, self).__init__()
        self.eps = eps
        self.weight = nn.Parameter(torch.ones(d_model))

    def forward(self, x):
        output = x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) * self.weight
        return output