Spaces:
Sleeping
Sleeping
| import torch | |
| import torch.nn as nn | |
| from layers.Embed import DataEmbedding | |
| from layers.Autoformer_EncDec import series_decomp, series_decomp_multi | |
| import torch.nn.functional as F | |
| class MIC(nn.Module): | |
| """ | |
| MIC layer to extract local and global features | |
| """ | |
| def __init__(self, feature_size=512, n_heads=8, dropout=0.05, decomp_kernel=[32], conv_kernel=[24], | |
| isometric_kernel=[18, 6], device='cuda'): | |
| super(MIC, self).__init__() | |
| self.conv_kernel = conv_kernel | |
| self.device = device | |
| # isometric convolution | |
| self.isometric_conv = nn.ModuleList([nn.Conv1d(in_channels=feature_size, out_channels=feature_size, | |
| kernel_size=i, padding=0, stride=1) | |
| for i in isometric_kernel]) | |
| # downsampling convolution: padding=i//2, stride=i | |
| self.conv = nn.ModuleList([nn.Conv1d(in_channels=feature_size, out_channels=feature_size, | |
| kernel_size=i, padding=i // 2, stride=i) | |
| for i in conv_kernel]) | |
| # upsampling convolution | |
| self.conv_trans = nn.ModuleList([nn.ConvTranspose1d(in_channels=feature_size, out_channels=feature_size, | |
| kernel_size=i, padding=0, stride=i) | |
| for i in conv_kernel]) | |
| self.decomp = nn.ModuleList([series_decomp(k) for k in decomp_kernel]) | |
| self.merge = torch.nn.Conv2d(in_channels=feature_size, out_channels=feature_size, | |
| kernel_size=(len(self.conv_kernel), 1)) | |
| # feedforward network | |
| self.conv1 = nn.Conv1d(in_channels=feature_size, out_channels=feature_size * 4, kernel_size=1) | |
| self.conv2 = nn.Conv1d(in_channels=feature_size * 4, out_channels=feature_size, kernel_size=1) | |
| self.norm1 = nn.LayerNorm(feature_size) | |
| self.norm2 = nn.LayerNorm(feature_size) | |
| self.norm = torch.nn.LayerNorm(feature_size) | |
| self.act = torch.nn.Tanh() | |
| self.drop = torch.nn.Dropout(0.05) | |
| def conv_trans_conv(self, input, conv1d, conv1d_trans, isometric): | |
| batch, seq_len, channel = input.shape | |
| x = input.permute(0, 2, 1) | |
| # downsampling convolution | |
| x1 = self.drop(self.act(conv1d(x))) | |
| x = x1 | |
| # isometric convolution | |
| zeros = torch.zeros((x.shape[0], x.shape[1], x.shape[2] - 1), device=self.device) | |
| x = torch.cat((zeros, x), dim=-1) | |
| x = self.drop(self.act(isometric(x))) | |
| x = self.norm((x + x1).permute(0, 2, 1)).permute(0, 2, 1) | |
| # upsampling convolution | |
| x = self.drop(self.act(conv1d_trans(x))) | |
| x = x[:, :, :seq_len] # truncate | |
| x = self.norm(x.permute(0, 2, 1) + input) | |
| return x | |
| def forward(self, src): | |
| # multi-scale | |
| multi = [] | |
| for i in range(len(self.conv_kernel)): | |
| src_out, trend1 = self.decomp[i](src) | |
| src_out = self.conv_trans_conv(src_out, self.conv[i], self.conv_trans[i], self.isometric_conv[i]) | |
| multi.append(src_out) | |
| # merge | |
| mg = torch.tensor([], device=self.device) | |
| for i in range(len(self.conv_kernel)): | |
| mg = torch.cat((mg, multi[i].unsqueeze(1)), dim=1) | |
| mg = self.merge(mg.permute(0, 3, 1, 2)).squeeze(-2).permute(0, 2, 1) | |
| y = self.norm1(mg) | |
| y = self.conv2(self.conv1(y.transpose(-1, 1))).transpose(-1, 1) | |
| return self.norm2(mg + y) | |
| class SeasonalPrediction(nn.Module): | |
| def __init__(self, embedding_size=512, n_heads=8, dropout=0.05, d_layers=1, decomp_kernel=[32], c_out=1, | |
| conv_kernel=[2, 4], isometric_kernel=[18, 6], device='cuda'): | |
| super(SeasonalPrediction, self).__init__() | |
| self.mic = nn.ModuleList([MIC(feature_size=embedding_size, n_heads=n_heads, | |
| decomp_kernel=decomp_kernel, conv_kernel=conv_kernel, | |
| isometric_kernel=isometric_kernel, device=device) | |
| for i in range(d_layers)]) | |
| self.projection = nn.Linear(embedding_size, c_out) | |
| def forward(self, dec): | |
| for mic_layer in self.mic: | |
| dec = mic_layer(dec) | |
| return self.projection(dec) | |
| class Model(nn.Module): | |
| """ | |
| Paper link: https://openreview.net/pdf?id=zt53IDUR1U | |
| """ | |
| def __init__(self, configs, conv_kernel=[12, 16]): | |
| """ | |
| conv_kernel: downsampling and upsampling convolution kernel_size | |
| """ | |
| super(Model, self).__init__() | |
| decomp_kernel = [] # kernel of decomposition operation | |
| isometric_kernel = [] # kernel of isometric convolution | |
| for ii in conv_kernel: | |
| if ii % 2 == 0: # the kernel of decomposition operation must be odd | |
| decomp_kernel.append(ii + 1) | |
| isometric_kernel.append((configs.seq_len + configs.pred_len + ii) // ii) | |
| else: | |
| decomp_kernel.append(ii) | |
| isometric_kernel.append((configs.seq_len + configs.pred_len + ii - 1) // ii) | |
| self.task_name = configs.task_name | |
| self.pred_len = configs.pred_len | |
| self.seq_len = configs.seq_len | |
| # Multiple Series decomposition block from FEDformer | |
| self.decomp_multi = series_decomp_multi(decomp_kernel) | |
| # embedding | |
| self.dec_embedding = DataEmbedding(configs.enc_in, configs.d_model, configs.embed, configs.freq, | |
| configs.dropout) | |
| self.conv_trans = SeasonalPrediction(embedding_size=configs.d_model, n_heads=configs.n_heads, | |
| dropout=configs.dropout, | |
| d_layers=configs.d_layers, decomp_kernel=decomp_kernel, | |
| c_out=configs.c_out, conv_kernel=conv_kernel, | |
| isometric_kernel=isometric_kernel, device=torch.device('cuda:0')) | |
| if self.task_name == 'long_term_forecast' or self.task_name == 'short_term_forecast': | |
| # refer to DLinear | |
| self.regression = nn.Linear(configs.seq_len, configs.pred_len) | |
| self.regression.weight = nn.Parameter( | |
| (1 / configs.pred_len) * torch.ones([configs.pred_len, configs.seq_len]), | |
| requires_grad=True) | |
| if self.task_name == 'imputation': | |
| self.projection = nn.Linear(configs.d_model, configs.c_out, bias=True) | |
| if self.task_name == 'anomaly_detection': | |
| self.projection = nn.Linear(configs.d_model, configs.c_out, bias=True) | |
| if self.task_name == 'classification': | |
| self.act = F.gelu | |
| self.dropout = nn.Dropout(configs.dropout) | |
| self.projection = nn.Linear(configs.c_out * configs.seq_len, configs.num_class) | |
| def forecast(self, x_enc, x_mark_enc, x_dec, x_mark_dec): | |
| # Multi-scale Hybrid Decomposition | |
| seasonal_init_enc, trend = self.decomp_multi(x_enc) | |
| trend = self.regression(trend.permute(0, 2, 1)).permute(0, 2, 1) | |
| # embedding | |
| zeros = torch.zeros([x_dec.shape[0], self.pred_len, x_dec.shape[2]], device=x_enc.device) | |
| seasonal_init_dec = torch.cat([seasonal_init_enc[:, -self.seq_len:, :], zeros], dim=1) | |
| dec_out = self.dec_embedding(seasonal_init_dec, x_mark_dec) | |
| dec_out = self.conv_trans(dec_out) | |
| dec_out = dec_out[:, -self.pred_len:, :] + trend[:, -self.pred_len:, :] | |
| return dec_out | |
| def imputation(self, x_enc, x_mark_enc, x_dec, x_mark_dec, mask): | |
| # Multi-scale Hybrid Decomposition | |
| seasonal_init_enc, trend = self.decomp_multi(x_enc) | |
| # embedding | |
| dec_out = self.dec_embedding(seasonal_init_enc, x_mark_dec) | |
| dec_out = self.conv_trans(dec_out) | |
| dec_out = dec_out + trend | |
| return dec_out | |
| def anomaly_detection(self, x_enc): | |
| # Multi-scale Hybrid Decomposition | |
| seasonal_init_enc, trend = self.decomp_multi(x_enc) | |
| # embedding | |
| dec_out = self.dec_embedding(seasonal_init_enc, None) | |
| dec_out = self.conv_trans(dec_out) | |
| dec_out = dec_out + trend | |
| return dec_out | |
| def classification(self, x_enc, x_mark_enc): | |
| # Multi-scale Hybrid Decomposition | |
| seasonal_init_enc, trend = self.decomp_multi(x_enc) | |
| # embedding | |
| dec_out = self.dec_embedding(seasonal_init_enc, None) | |
| dec_out = self.conv_trans(dec_out) | |
| dec_out = dec_out + trend | |
| # Output from Non-stationary Transformer | |
| output = self.act(dec_out) # the output transformer encoder/decoder embeddings don't include non-linearity | |
| output = self.dropout(output) | |
| output = output * x_mark_enc.unsqueeze(-1) # zero-out padding embeddings | |
| output = output.reshape(output.shape[0], -1) # (batch_size, seq_length * d_model) | |
| output = self.projection(output) # (batch_size, num_classes) | |
| return output | |
| def forward(self, x_enc, x_mark_enc, x_dec, x_mark_dec, mask=None): | |
| if self.task_name == 'long_term_forecast' or self.task_name == 'short_term_forecast': | |
| dec_out = self.forecast(x_enc, x_mark_enc, x_dec, x_mark_dec) | |
| return dec_out[:, -self.pred_len:, :] # [B, L, D] | |
| if self.task_name == 'imputation': | |
| dec_out = self.imputation( | |
| x_enc, x_mark_enc, x_dec, x_mark_dec, mask) | |
| return dec_out # [B, L, D] | |
| if self.task_name == 'anomaly_detection': | |
| dec_out = self.anomaly_detection(x_enc) | |
| return dec_out # [B, L, D] | |
| if self.task_name == 'classification': | |
| dec_out = self.classification(x_enc, x_mark_enc) | |
| return dec_out # [B, N] | |
| return None | |