File size: 9,901 Bytes
e1ccef5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import torch
import torch.nn as nn
from layers.Embed import DataEmbedding
from layers.Autoformer_EncDec import series_decomp, series_decomp_multi
import torch.nn.functional as F


class MIC(nn.Module):
    """
    MIC layer to extract local and global features
    """

    def __init__(self, feature_size=512, n_heads=8, dropout=0.05, decomp_kernel=[32], conv_kernel=[24],
                 isometric_kernel=[18, 6], device='cuda'):
        super(MIC, self).__init__()
        self.conv_kernel = conv_kernel
        self.device = device

        # isometric convolution
        self.isometric_conv = nn.ModuleList([nn.Conv1d(in_channels=feature_size, out_channels=feature_size,
                                                       kernel_size=i, padding=0, stride=1)
                                             for i in isometric_kernel])

        # downsampling convolution: padding=i//2, stride=i
        self.conv = nn.ModuleList([nn.Conv1d(in_channels=feature_size, out_channels=feature_size,
                                             kernel_size=i, padding=i // 2, stride=i)
                                   for i in conv_kernel])

        # upsampling convolution
        self.conv_trans = nn.ModuleList([nn.ConvTranspose1d(in_channels=feature_size, out_channels=feature_size,
                                                            kernel_size=i, padding=0, stride=i)
                                         for i in conv_kernel])

        self.decomp = nn.ModuleList([series_decomp(k) for k in decomp_kernel])
        self.merge = torch.nn.Conv2d(in_channels=feature_size, out_channels=feature_size,
                                     kernel_size=(len(self.conv_kernel), 1))

        # feedforward network
        self.conv1 = nn.Conv1d(in_channels=feature_size, out_channels=feature_size * 4, kernel_size=1)
        self.conv2 = nn.Conv1d(in_channels=feature_size * 4, out_channels=feature_size, kernel_size=1)
        self.norm1 = nn.LayerNorm(feature_size)
        self.norm2 = nn.LayerNorm(feature_size)

        self.norm = torch.nn.LayerNorm(feature_size)
        self.act = torch.nn.Tanh()
        self.drop = torch.nn.Dropout(0.05)

    def conv_trans_conv(self, input, conv1d, conv1d_trans, isometric):
        batch, seq_len, channel = input.shape
        x = input.permute(0, 2, 1)

        # downsampling convolution
        x1 = self.drop(self.act(conv1d(x)))
        x = x1

        # isometric convolution
        zeros = torch.zeros((x.shape[0], x.shape[1], x.shape[2] - 1), device=self.device)
        x = torch.cat((zeros, x), dim=-1)
        x = self.drop(self.act(isometric(x)))
        x = self.norm((x + x1).permute(0, 2, 1)).permute(0, 2, 1)

        # upsampling convolution
        x = self.drop(self.act(conv1d_trans(x)))
        x = x[:, :, :seq_len]  # truncate

        x = self.norm(x.permute(0, 2, 1) + input)
        return x

    def forward(self, src):
        # multi-scale
        multi = []
        for i in range(len(self.conv_kernel)):
            src_out, trend1 = self.decomp[i](src)
            src_out = self.conv_trans_conv(src_out, self.conv[i], self.conv_trans[i], self.isometric_conv[i])
            multi.append(src_out)

            # merge
        mg = torch.tensor([], device=self.device)
        for i in range(len(self.conv_kernel)):
            mg = torch.cat((mg, multi[i].unsqueeze(1)), dim=1)
        mg = self.merge(mg.permute(0, 3, 1, 2)).squeeze(-2).permute(0, 2, 1)

        y = self.norm1(mg)
        y = self.conv2(self.conv1(y.transpose(-1, 1))).transpose(-1, 1)

        return self.norm2(mg + y)


class SeasonalPrediction(nn.Module):
    def __init__(self, embedding_size=512, n_heads=8, dropout=0.05, d_layers=1, decomp_kernel=[32], c_out=1,
                 conv_kernel=[2, 4], isometric_kernel=[18, 6], device='cuda'):
        super(SeasonalPrediction, self).__init__()

        self.mic = nn.ModuleList([MIC(feature_size=embedding_size, n_heads=n_heads,
                                      decomp_kernel=decomp_kernel, conv_kernel=conv_kernel,
                                      isometric_kernel=isometric_kernel, device=device)
                                  for i in range(d_layers)])

        self.projection = nn.Linear(embedding_size, c_out)

    def forward(self, dec):
        for mic_layer in self.mic:
            dec = mic_layer(dec)
        return self.projection(dec)


class Model(nn.Module):
    """
    Paper link: https://openreview.net/pdf?id=zt53IDUR1U
    """
    def __init__(self, configs, conv_kernel=[12, 16]):
        """
        conv_kernel: downsampling and upsampling convolution kernel_size
        """
        super(Model, self).__init__()

        decomp_kernel = []  # kernel of decomposition operation
        isometric_kernel = []  # kernel of isometric convolution
        for ii in conv_kernel:
            if ii % 2 == 0:  # the kernel of decomposition operation must be odd
                decomp_kernel.append(ii + 1)
                isometric_kernel.append((configs.seq_len + configs.pred_len + ii) // ii)
            else:
                decomp_kernel.append(ii)
                isometric_kernel.append((configs.seq_len + configs.pred_len + ii - 1) // ii)

        self.task_name = configs.task_name
        self.pred_len = configs.pred_len
        self.seq_len = configs.seq_len

        # Multiple Series decomposition block from FEDformer
        self.decomp_multi = series_decomp_multi(decomp_kernel)

        # embedding
        self.dec_embedding = DataEmbedding(configs.enc_in, configs.d_model, configs.embed, configs.freq,
                                           configs.dropout)

        self.conv_trans = SeasonalPrediction(embedding_size=configs.d_model, n_heads=configs.n_heads,
                                             dropout=configs.dropout,
                                             d_layers=configs.d_layers, decomp_kernel=decomp_kernel,
                                             c_out=configs.c_out, conv_kernel=conv_kernel,
                                             isometric_kernel=isometric_kernel, device=torch.device('cuda:0'))
        if self.task_name == 'long_term_forecast' or self.task_name == 'short_term_forecast':
            # refer to DLinear
            self.regression = nn.Linear(configs.seq_len, configs.pred_len)
            self.regression.weight = nn.Parameter(
                (1 / configs.pred_len) * torch.ones([configs.pred_len, configs.seq_len]),
                requires_grad=True)
        if self.task_name == 'imputation':
            self.projection = nn.Linear(configs.d_model, configs.c_out, bias=True)
        if self.task_name == 'anomaly_detection':
            self.projection = nn.Linear(configs.d_model, configs.c_out, bias=True)
        if self.task_name == 'classification':
            self.act = F.gelu
            self.dropout = nn.Dropout(configs.dropout)
            self.projection = nn.Linear(configs.c_out * configs.seq_len, configs.num_class)

    def forecast(self, x_enc, x_mark_enc, x_dec, x_mark_dec):
        # Multi-scale Hybrid Decomposition
        seasonal_init_enc, trend = self.decomp_multi(x_enc)
        trend = self.regression(trend.permute(0, 2, 1)).permute(0, 2, 1)

        # embedding
        zeros = torch.zeros([x_dec.shape[0], self.pred_len, x_dec.shape[2]], device=x_enc.device)
        seasonal_init_dec = torch.cat([seasonal_init_enc[:, -self.seq_len:, :], zeros], dim=1)
        dec_out = self.dec_embedding(seasonal_init_dec, x_mark_dec)
        dec_out = self.conv_trans(dec_out)
        dec_out = dec_out[:, -self.pred_len:, :] + trend[:, -self.pred_len:, :]
        return dec_out

    def imputation(self, x_enc, x_mark_enc, x_dec, x_mark_dec, mask):
        # Multi-scale Hybrid Decomposition
        seasonal_init_enc, trend = self.decomp_multi(x_enc)

        # embedding
        dec_out = self.dec_embedding(seasonal_init_enc, x_mark_dec)
        dec_out = self.conv_trans(dec_out)
        dec_out = dec_out + trend
        return dec_out

    def anomaly_detection(self, x_enc):
        # Multi-scale Hybrid Decomposition
        seasonal_init_enc, trend = self.decomp_multi(x_enc)

        # embedding
        dec_out = self.dec_embedding(seasonal_init_enc, None)
        dec_out = self.conv_trans(dec_out)
        dec_out = dec_out + trend
        return dec_out

    def classification(self, x_enc, x_mark_enc):
        # Multi-scale Hybrid Decomposition
        seasonal_init_enc, trend = self.decomp_multi(x_enc)
        # embedding
        dec_out = self.dec_embedding(seasonal_init_enc, None)
        dec_out = self.conv_trans(dec_out)
        dec_out = dec_out + trend

        # Output from Non-stationary Transformer
        output = self.act(dec_out)  # the output transformer encoder/decoder embeddings don't include non-linearity
        output = self.dropout(output)
        output = output * x_mark_enc.unsqueeze(-1)  # zero-out padding embeddings
        output = output.reshape(output.shape[0], -1)  # (batch_size, seq_length * d_model)
        output = self.projection(output)  # (batch_size, num_classes)
        return output

    def forward(self, x_enc, x_mark_enc, x_dec, x_mark_dec, mask=None):
        if self.task_name == 'long_term_forecast' or self.task_name == 'short_term_forecast':
            dec_out = self.forecast(x_enc, x_mark_enc, x_dec, x_mark_dec)
            return dec_out[:, -self.pred_len:, :]  # [B, L, D]
        if self.task_name == 'imputation':
            dec_out = self.imputation(
                x_enc, x_mark_enc, x_dec, x_mark_dec, mask)
            return dec_out  # [B, L, D]
        if self.task_name == 'anomaly_detection':
            dec_out = self.anomaly_detection(x_enc)
            return dec_out  # [B, L, D]
        if self.task_name == 'classification':
            dec_out = self.classification(x_enc, x_mark_enc)
            return dec_out  # [B, N]
        return None