Spaces:
Sleeping
Sleeping
File size: 9,901 Bytes
e1ccef5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
import torch
import torch.nn as nn
from layers.Embed import DataEmbedding
from layers.Autoformer_EncDec import series_decomp, series_decomp_multi
import torch.nn.functional as F
class MIC(nn.Module):
"""
MIC layer to extract local and global features
"""
def __init__(self, feature_size=512, n_heads=8, dropout=0.05, decomp_kernel=[32], conv_kernel=[24],
isometric_kernel=[18, 6], device='cuda'):
super(MIC, self).__init__()
self.conv_kernel = conv_kernel
self.device = device
# isometric convolution
self.isometric_conv = nn.ModuleList([nn.Conv1d(in_channels=feature_size, out_channels=feature_size,
kernel_size=i, padding=0, stride=1)
for i in isometric_kernel])
# downsampling convolution: padding=i//2, stride=i
self.conv = nn.ModuleList([nn.Conv1d(in_channels=feature_size, out_channels=feature_size,
kernel_size=i, padding=i // 2, stride=i)
for i in conv_kernel])
# upsampling convolution
self.conv_trans = nn.ModuleList([nn.ConvTranspose1d(in_channels=feature_size, out_channels=feature_size,
kernel_size=i, padding=0, stride=i)
for i in conv_kernel])
self.decomp = nn.ModuleList([series_decomp(k) for k in decomp_kernel])
self.merge = torch.nn.Conv2d(in_channels=feature_size, out_channels=feature_size,
kernel_size=(len(self.conv_kernel), 1))
# feedforward network
self.conv1 = nn.Conv1d(in_channels=feature_size, out_channels=feature_size * 4, kernel_size=1)
self.conv2 = nn.Conv1d(in_channels=feature_size * 4, out_channels=feature_size, kernel_size=1)
self.norm1 = nn.LayerNorm(feature_size)
self.norm2 = nn.LayerNorm(feature_size)
self.norm = torch.nn.LayerNorm(feature_size)
self.act = torch.nn.Tanh()
self.drop = torch.nn.Dropout(0.05)
def conv_trans_conv(self, input, conv1d, conv1d_trans, isometric):
batch, seq_len, channel = input.shape
x = input.permute(0, 2, 1)
# downsampling convolution
x1 = self.drop(self.act(conv1d(x)))
x = x1
# isometric convolution
zeros = torch.zeros((x.shape[0], x.shape[1], x.shape[2] - 1), device=self.device)
x = torch.cat((zeros, x), dim=-1)
x = self.drop(self.act(isometric(x)))
x = self.norm((x + x1).permute(0, 2, 1)).permute(0, 2, 1)
# upsampling convolution
x = self.drop(self.act(conv1d_trans(x)))
x = x[:, :, :seq_len] # truncate
x = self.norm(x.permute(0, 2, 1) + input)
return x
def forward(self, src):
# multi-scale
multi = []
for i in range(len(self.conv_kernel)):
src_out, trend1 = self.decomp[i](src)
src_out = self.conv_trans_conv(src_out, self.conv[i], self.conv_trans[i], self.isometric_conv[i])
multi.append(src_out)
# merge
mg = torch.tensor([], device=self.device)
for i in range(len(self.conv_kernel)):
mg = torch.cat((mg, multi[i].unsqueeze(1)), dim=1)
mg = self.merge(mg.permute(0, 3, 1, 2)).squeeze(-2).permute(0, 2, 1)
y = self.norm1(mg)
y = self.conv2(self.conv1(y.transpose(-1, 1))).transpose(-1, 1)
return self.norm2(mg + y)
class SeasonalPrediction(nn.Module):
def __init__(self, embedding_size=512, n_heads=8, dropout=0.05, d_layers=1, decomp_kernel=[32], c_out=1,
conv_kernel=[2, 4], isometric_kernel=[18, 6], device='cuda'):
super(SeasonalPrediction, self).__init__()
self.mic = nn.ModuleList([MIC(feature_size=embedding_size, n_heads=n_heads,
decomp_kernel=decomp_kernel, conv_kernel=conv_kernel,
isometric_kernel=isometric_kernel, device=device)
for i in range(d_layers)])
self.projection = nn.Linear(embedding_size, c_out)
def forward(self, dec):
for mic_layer in self.mic:
dec = mic_layer(dec)
return self.projection(dec)
class Model(nn.Module):
"""
Paper link: https://openreview.net/pdf?id=zt53IDUR1U
"""
def __init__(self, configs, conv_kernel=[12, 16]):
"""
conv_kernel: downsampling and upsampling convolution kernel_size
"""
super(Model, self).__init__()
decomp_kernel = [] # kernel of decomposition operation
isometric_kernel = [] # kernel of isometric convolution
for ii in conv_kernel:
if ii % 2 == 0: # the kernel of decomposition operation must be odd
decomp_kernel.append(ii + 1)
isometric_kernel.append((configs.seq_len + configs.pred_len + ii) // ii)
else:
decomp_kernel.append(ii)
isometric_kernel.append((configs.seq_len + configs.pred_len + ii - 1) // ii)
self.task_name = configs.task_name
self.pred_len = configs.pred_len
self.seq_len = configs.seq_len
# Multiple Series decomposition block from FEDformer
self.decomp_multi = series_decomp_multi(decomp_kernel)
# embedding
self.dec_embedding = DataEmbedding(configs.enc_in, configs.d_model, configs.embed, configs.freq,
configs.dropout)
self.conv_trans = SeasonalPrediction(embedding_size=configs.d_model, n_heads=configs.n_heads,
dropout=configs.dropout,
d_layers=configs.d_layers, decomp_kernel=decomp_kernel,
c_out=configs.c_out, conv_kernel=conv_kernel,
isometric_kernel=isometric_kernel, device=torch.device('cuda:0'))
if self.task_name == 'long_term_forecast' or self.task_name == 'short_term_forecast':
# refer to DLinear
self.regression = nn.Linear(configs.seq_len, configs.pred_len)
self.regression.weight = nn.Parameter(
(1 / configs.pred_len) * torch.ones([configs.pred_len, configs.seq_len]),
requires_grad=True)
if self.task_name == 'imputation':
self.projection = nn.Linear(configs.d_model, configs.c_out, bias=True)
if self.task_name == 'anomaly_detection':
self.projection = nn.Linear(configs.d_model, configs.c_out, bias=True)
if self.task_name == 'classification':
self.act = F.gelu
self.dropout = nn.Dropout(configs.dropout)
self.projection = nn.Linear(configs.c_out * configs.seq_len, configs.num_class)
def forecast(self, x_enc, x_mark_enc, x_dec, x_mark_dec):
# Multi-scale Hybrid Decomposition
seasonal_init_enc, trend = self.decomp_multi(x_enc)
trend = self.regression(trend.permute(0, 2, 1)).permute(0, 2, 1)
# embedding
zeros = torch.zeros([x_dec.shape[0], self.pred_len, x_dec.shape[2]], device=x_enc.device)
seasonal_init_dec = torch.cat([seasonal_init_enc[:, -self.seq_len:, :], zeros], dim=1)
dec_out = self.dec_embedding(seasonal_init_dec, x_mark_dec)
dec_out = self.conv_trans(dec_out)
dec_out = dec_out[:, -self.pred_len:, :] + trend[:, -self.pred_len:, :]
return dec_out
def imputation(self, x_enc, x_mark_enc, x_dec, x_mark_dec, mask):
# Multi-scale Hybrid Decomposition
seasonal_init_enc, trend = self.decomp_multi(x_enc)
# embedding
dec_out = self.dec_embedding(seasonal_init_enc, x_mark_dec)
dec_out = self.conv_trans(dec_out)
dec_out = dec_out + trend
return dec_out
def anomaly_detection(self, x_enc):
# Multi-scale Hybrid Decomposition
seasonal_init_enc, trend = self.decomp_multi(x_enc)
# embedding
dec_out = self.dec_embedding(seasonal_init_enc, None)
dec_out = self.conv_trans(dec_out)
dec_out = dec_out + trend
return dec_out
def classification(self, x_enc, x_mark_enc):
# Multi-scale Hybrid Decomposition
seasonal_init_enc, trend = self.decomp_multi(x_enc)
# embedding
dec_out = self.dec_embedding(seasonal_init_enc, None)
dec_out = self.conv_trans(dec_out)
dec_out = dec_out + trend
# Output from Non-stationary Transformer
output = self.act(dec_out) # the output transformer encoder/decoder embeddings don't include non-linearity
output = self.dropout(output)
output = output * x_mark_enc.unsqueeze(-1) # zero-out padding embeddings
output = output.reshape(output.shape[0], -1) # (batch_size, seq_length * d_model)
output = self.projection(output) # (batch_size, num_classes)
return output
def forward(self, x_enc, x_mark_enc, x_dec, x_mark_dec, mask=None):
if self.task_name == 'long_term_forecast' or self.task_name == 'short_term_forecast':
dec_out = self.forecast(x_enc, x_mark_enc, x_dec, x_mark_dec)
return dec_out[:, -self.pred_len:, :] # [B, L, D]
if self.task_name == 'imputation':
dec_out = self.imputation(
x_enc, x_mark_enc, x_dec, x_mark_dec, mask)
return dec_out # [B, L, D]
if self.task_name == 'anomaly_detection':
dec_out = self.anomaly_detection(x_enc)
return dec_out # [B, L, D]
if self.task_name == 'classification':
dec_out = self.classification(x_enc, x_mark_enc)
return dec_out # [B, N]
return None
|