Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,078 Bytes
1a20a46 e37991a 1a20a46 e37991a 1a20a46 22f8394 1a20a46 9576941 22f8394 53a1d00 1a20a46 e37991a 1a20a46 e37991a 1a20a46 e37991a 1a20a46 e37991a 1a20a46 f7bddbb 1a20a46 f7bddbb 1a20a46 f7bddbb 1a20a46 f7bddbb 1a20a46 dab4621 33e0319 e37991a 1a20a46 82bcbe5 1a20a46 82bcbe5 1a20a46 314f388 1a20a46 f97675f ff81205 1a20a46 2c8ec61 1a20a46 dab4621 1a20a46 2c8ec61 1fad7ce 1a20a46 09d2b03 01dab45 1a20a46 33e0319 dab4621 1a20a46 9576941 f97675f 9576941 1a20a46 b9970bf 1a20a46 7cf279d 33e0319 f7bddbb 1a20a46 33e0319 dab4621 b281518 33e0319 dab4621 1a20a46 282214b 1a20a46 33e0319 f7bddbb 1a20a46 33e0319 1a20a46 e04a1e2 b6e90a6 1a20a46 33e0319 1a20a46 c1ec572 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 |
import spaces
import gradio as gr
import sys
import os
import subprocess
import uuid
import shutil
from tqdm import tqdm
from huggingface_hub import snapshot_download, list_repo_files, hf_hub_download
import importlib, site
# Re-discover all .pth/.egg-link files
for sitedir in site.getsitepackages():
site.addsitedir(sitedir)
# Clear caches so importlib will pick up new modules
importlib.invalidate_caches()
def sh(cmd): subprocess.check_call(cmd, shell=True)
flash_attention_installed = False
try:
flash_attention_wheel = hf_hub_download(
repo_id="alexnasa/flash-attn-3",
repo_type="model",
filename="128/flash_attn_3-3.0.0b1-cp39-abi3-linux_x86_64.whl",
)
sh(f"pip install {flash_attention_wheel}")
print("Attempting to download and install FlashAttention wheel...")
import importlib, site; site.addsitedir(site.getsitepackages()[0]); importlib.invalidate_caches()
flash_attention_installed = True
except Exception as e:
print(f"β οΈ Could not install FlashAttention: {e}")
print("Continuing without FlashAttention...")
try:
te_wheel = hf_hub_download(
repo_id="alexnasa/transformer_engine_wheels",
repo_type="model",
filename="transformer_engine-2.5.0+f05f12c9-cp310-cp310-linux_x86_64.whl",
)
sh(f"pip install {te_wheel}")
print("Attempting to download and install Transformer Engine wheel...")
import importlib, site; site.addsitedir(site.getsitepackages()[0]); importlib.invalidate_caches()
except Exception as e:
print(f"β οΈ Could not install Transformer Engine : {e}")
print("Continuing without Transformer Engine ...")
import torch
print(f"Torch version: {torch.__version__}")
print(f"FlashAttention available: {flash_attention_installed}")
import tempfile
from pathlib import Path
from torch._inductor.runtime.runtime_utils import cache_dir as _inductor_cache_dir
from huggingface_hub import HfApi
snapshot_download(repo_id="bytedance-research/HuMo", local_dir="./weights/HuMo")
snapshot_download(repo_id="Wan-AI/Wan2.1-T2V-1.3B", local_dir="./weights/Wan2.1-T2V-1.3B")
snapshot_download(repo_id="openai/whisper-large-v3", local_dir="./weights/whisper-large-v3")
os.environ["PROCESSED_RESULTS"] = f"{os.getcwd()}/proprocess_results"
path_to_insert = "humo"
if path_to_insert not in sys.path:
sys.path.insert(0, path_to_insert)
from common.config import load_config, create_object
config = load_config(
"./humo/configs/inference/generate.yaml",
[
"dit.sp_size=1",
"generation.frames=97",
"generation.scale_t=5.5",
"generation.scale_a=5.0",
"generation.mode=TIA",
"generation.height=480",
"generation.width=832",
],
)
runner = create_object(config)
os.environ.setdefault("TORCHINDUCTOR_CACHE_DIR", f"{os.getcwd()}/torchinductor_space") # or another writable path
def restore_inductor_cache_from_hub(repo_id: str, filename: str = "torch_compile_cache.zip",
path_in_repo: str = "inductor_cache", repo_type: str = "model",
hf_token: str | None = None):
cache_root = Path(_inductor_cache_dir()).resolve()
cache_root.mkdir(parents=True, exist_ok=True)
zip_path = hf_hub_download(repo_id=repo_id, filename=f"{path_in_repo}/{filename}",
repo_type=repo_type, token=hf_token)
shutil.unpack_archive(zip_path, extract_dir=str(cache_root))
print(f"β Restored cache into {cache_root}")
# restore_inductor_cache_from_hub("alexnasa/humo-compiled")
def get_duration(prompt_text, steps, image_file, audio_file_path, max_duration, session_id, progress):
return calculate_required_time(steps, max_duration)
def calculate_required_time(steps, max_duration):
warmup_s = 50
max_duration_duration_mapping = {
20: 3,
45: 7,
70: 13,
95: 21,
}
# Humo 1.7
# max_duration_duration_mapping = {
# 20: 2,
# 45: 2,
# 70: 5,
# 95: 6,
# }
each_step_s = max_duration_duration_mapping[max_duration]
duration_s = (each_step_s * steps) + warmup_s
print(f'estimated duration:{duration_s}')
return int(duration_s)
def get_required_time_string(steps, max_duration):
duration_s = calculate_required_time(steps, max_duration)
duration_m = duration_s / 60
return f"<center>β Zero GPU Required: ~{duration_s}.0s ({duration_m:.1f} mins)</center>"
def update_required_time(steps, max_duration):
return get_required_time_string(steps, max_duration)
def generate_scene(prompt_text, steps, image_paths, audio_file_path, max_duration = 3, session_id = None, progress=gr.Progress(),):
prompt_text_check = (prompt_text or "").strip()
if not prompt_text_check:
raise gr.Error("Please enter a prompt.")
if not audio_file_path and not image_paths:
raise gr.Error("Please provide a reference image or a lipsync audio.")
return run_pipeline(prompt_text, steps, image_paths, audio_file_path, max_duration, session_id, progress)
def upload_inductor_cache_to_hub(
repo_id: str,
path_in_repo: str = "inductor_cache",
repo_type: str = "model", # or "dataset" if you prefer
hf_token: str | None = None,
):
"""
Zips the current TorchInductor cache and uploads it to the given repo path.
Assumes the model was already run once with torch.compile() so the cache exists.
"""
cache_dir = Path(_inductor_cache_dir()).resolve()
if not cache_dir.exists():
raise FileNotFoundError(f"TorchInductor cache not found at {cache_dir}. "
"Run a compiled model once to populate it.")
# Create a zip archive of the entire cache directory
with tempfile.TemporaryDirectory() as tmpdir:
archive_base = Path(tmpdir) / "torch_compile_cache"
archive_path = shutil.make_archive(str(archive_base), "zip", root_dir=str(cache_dir))
archive_path = Path(archive_path)
# Upload to Hub
api = HfApi(token=hf_token)
api.create_repo(repo_id=repo_id, repo_type=repo_type, exist_ok=True)
# Put each artifact under path_in_repo, including a tiny metadata stamp for traceability
# Upload the zip
dest_path = f"{path_in_repo}/{archive_path.name}"
api.upload_file(
path_or_fileobj=str(archive_path),
path_in_repo=dest_path,
repo_id=repo_id,
repo_type=repo_type,
)
# Upload a small metadata file (optional but handy)
meta_txt = (
f"pytorch={torch.__version__}\n"
f"inductor_cache_dir={cache_dir}\n"
f"cuda_available={torch.cuda.is_available()}\n"
f"cuda_device={torch.cuda.get_device_name(0) if torch.cuda.is_available() else 'cpu'}\n"
)
api.upload_file(
path_or_fileobj=meta_txt.encode(),
path_in_repo=f"{path_in_repo}/INDUCTOR_CACHE_METADATA.txt",
repo_id=repo_id,
repo_type=repo_type,
)
print("β Uploaded TorchInductor cache to the Hub.")
@spaces.GPU(duration=get_duration)
def run_pipeline(prompt_text, steps, image_paths, audio_file_path, max_duration = 3, session_id = None, progress=gr.Progress(),):
if session_id is None:
session_id = uuid.uuid4().hex
inference_mode = "TIA"
# Validate inputs
prompt_text = (prompt_text or "").strip()
if not prompt_text:
raise gr.Error("Please enter a prompt.")
if not audio_file_path and not image_paths:
raise gr.Error("Please provide a reference image or a lipsync audio.")
if not audio_file_path:
inference_mode = "TI"
audio_path = None
tmp_audio_path = None
else:
audio_path = audio_file_path if isinstance(audio_file_path, str) else getattr(audio_file_path, "name", str(audio_file_path))
if not image_paths:
inference_mode = "TA"
img_paths = None
else:
img_paths = [image_data[0] for image_data in image_paths]
print(f'{session_id} is using inference_mode:{inference_mode} with steps:{steps} with {max_duration} frames')
output_dir = os.path.join(os.environ["PROCESSED_RESULTS"], session_id)
os.makedirs(output_dir, exist_ok=True)
if audio_path:
def add_silence_to_audio_ffmpeg(audio_path, tmp_audio_path, silence_duration_s=0.5):
command = [
'ffmpeg',
'-i', audio_path,
'-f', 'lavfi',
'-t', str(silence_duration_s),
'-i', 'anullsrc=r=16000:cl=stereo',
'-filter_complex', '[1][0]concat=n=2:v=0:a=1[out]',
'-map', '[out]',
'-y', tmp_audio_path,
'-loglevel', 'quiet'
]
subprocess.run(command, check=True)
tmp_audio_path = os.path.join(output_dir, "tmp_audio.wav")
add_silence_to_audio_ffmpeg(audio_path, tmp_audio_path)
# Random filename
filename = f"gen_{uuid.uuid4().hex[:10]}"
width, height = 832, 480
runner.inference_loop(
prompt_text,
img_paths,
tmp_audio_path,
output_dir,
filename,
inference_mode,
width,
height,
steps,
frames = int(max_duration),
tea_cache_l1_thresh = 0.0,
progress_bar_cmd=progress
)
# Return resulting video path
video_path = os.path.join(output_dir, f"{filename}.mp4")
if os.path.exists(video_path):
# upload_inductor_cache_to_hub("alexnasa/humo-compiled")
return video_path
else:
candidates = [os.path.join(output_dir, f) for f in os.listdir(output_dir) if f.endswith(".mp4")]
if candidates:
return max(candidates, key=lambda p: os.path.getmtime(p))
return None
css = """
#col-container {
margin: 0 auto;
width: 100%;
max-width: 720px;
}
"""
def cleanup(request: gr.Request):
sid = request.session_hash
if sid:
d1 = os.path.join(os.environ["PROCESSED_RESULTS"], sid)
shutil.rmtree(d1, ignore_errors=True)
def start_session(request: gr.Request):
return request.session_hash
with gr.Blocks(css=css) as demo:
session_state = gr.State()
demo.load(start_session, outputs=[session_state])
with gr.Sidebar(width=400):
gr.HTML(
"""
<div style="text-align: center;">
<p style="font-size:16px; display: inline; margin: 0;">
<strong>HuMo</strong> β Human-Centric Video Generation via Collaborative Multi-Modal Conditioning
</p>
<a href="https://github.com/Phantom-video/HuMo" style="display: inline-block; vertical-align: middle; margin-left: 0.5em;">
[Github]
</a>
</div>
"""
)
gr.Markdown("**REFERENCE IMAGES**")
img_input = gr.Gallery(
value=["./examples/ali.png"],
show_label=False,
label="",
interactive=True,
rows=1, columns=3, object_fit="contain", height="280",
file_types=['image']
)
gr.Markdown("**LIPSYNC AUDIO**")
audio_input = gr.Audio(
value="./examples/life.wav",
sources=["upload"],
show_label=False,
type="filepath",
)
gr.Markdown("**SETTINGS**")
default_steps = 10
default_max_duration = 45
max_duration = gr.Slider(minimum=45, maximum=95, value=default_max_duration, step=25, label="Frames")
steps_input = gr.Slider(minimum=10, maximum=50, value=default_steps, step=5, label="Diffusion Steps")
with gr.Column(elem_id="col-container"):
gr.HTML(
"""
<div style="text-align: center;">
<strong>HF Space by:</strong>
<a href="https://twitter.com/alexandernasa/" style="display: inline-block; vertical-align: middle; margin-left: 0.5em;">
<img src="https://img.shields.io/twitter/url/https/twitter.com/cloudposse.svg?style=social&label=Follow Me" alt="GitHub Repo">
</a>
</div>
"""
)
video_output = gr.Video(show_label=False)
gr.Markdown("<center><h2>PROMPT</h2></center>")
prompt_tb = gr.Textbox(
value="A handheld tracking shot follows a female warrior walking through a cave. Her determined eyes are locked straight ahead as she grips a blazing torch tightly in her hand. She speaks with intensity.",
show_label=False,
lines=5,
placeholder="Describe the scene and the person talking....",
)
gr.Markdown("")
time_required = gr.Markdown(get_required_time_string(default_steps, default_max_duration))
run_btn = gr.Button("π¬ Action", variant="primary")
gr.Examples(
examples=[
[
"A handheld tracking shot follows a female through a science lab. Her determined eyes are locked straight ahead. She is explaining something to someone standing opposite her",
10,
["./examples/naomi.png"],
"./examples/science.wav",
70,
],
[
"A handheld tracking shot follows a female warrior walking through a cave. Her determined eyes are locked straight ahead as she grips a blazing torch tightly in her hand. She speaks with intensity.",
10,
["./examples/ella.png"],
"./examples/dream.mp3",
45,
],
[
"A reddish-brown haired woman sits pensively against swirling blue-and-white brushstrokes, dressed in a blue coat and dark waistcoat. The artistic backdrop and her thoughtful pose evoke a Post-Impressionist style in a studio-like setting.",
10,
["./examples/art.png"],
"./examples/art.wav",
70,
],
[
"A handheld tracking shot follows a female warrior walking through a cave. Her determined eyes are locked straight ahead as she grips a blazing torch tightly in her hand. She speaks with intensity.",
10,
["./examples/ella.png"],
"./examples/dream.mp3",
95,
],
[
"A woman with long, wavy dark hair looking at a person sitting opposite her whilst holding a book, wearing a leather jacket, long-sleeved jacket with a semi purple color one seen on a photo. Warm, window-like light bathes her figure, highlighting the outfit's elegant design and her graceful movements.",
40,
["./examples/amber.png", "./examples/jacket.png"],
"./examples/fictional.wav",
70,
],
],
inputs=[prompt_tb, steps_input, img_input, audio_input, max_duration],
outputs=[video_output],
fn=run_pipeline,
cache_examples=True,
)
max_duration.change(update_required_time, [steps_input, max_duration], time_required)
steps_input.change(update_required_time, [steps_input, max_duration], time_required)
run_btn.click(
fn=generate_scene,
inputs=[prompt_tb, steps_input, img_input, audio_input, max_duration, session_state],
outputs=[video_output],
)
if __name__ == "__main__":
demo.unload(cleanup)
demo.queue()
demo.launch(ssr_mode=False) |