Spaces:
Running
on
Zero
Running
on
Zero
alex
commited on
Commit
·
e37991a
1
Parent(s):
2c8ec61
progress bar fixed
Browse files- app.py +15 -7
- humo/generate.py +9 -3
- humo/generate_1_7B.py +326 -46
app.py
CHANGED
|
@@ -5,7 +5,7 @@ import os
|
|
| 5 |
import subprocess
|
| 6 |
import uuid
|
| 7 |
import shutil
|
| 8 |
-
|
| 9 |
|
| 10 |
|
| 11 |
from huggingface_hub import snapshot_download, list_repo_files, hf_hub_download
|
|
@@ -93,7 +93,6 @@ config = load_config(
|
|
| 93 |
)
|
| 94 |
runner = create_object(config)
|
| 95 |
|
| 96 |
-
|
| 97 |
os.environ.setdefault("TORCHINDUCTOR_CACHE_DIR", f"{os.getcwd()}/torchinductor_space") # or another writable path
|
| 98 |
|
| 99 |
def restore_inductor_cache_from_hub(repo_id: str, filename: str = "torch_compile_cache.zip",
|
|
@@ -110,7 +109,7 @@ def restore_inductor_cache_from_hub(repo_id: str, filename: str = "torch_compile
|
|
| 110 |
# restore_inductor_cache_from_hub("alexnasa/humo-compiled")
|
| 111 |
|
| 112 |
|
| 113 |
-
def get_duration(prompt_text, steps, image_file, audio_file_path, max_duration, session_id):
|
| 114 |
|
| 115 |
return calculate_required_time(steps, max_duration)
|
| 116 |
|
|
@@ -124,6 +123,15 @@ def calculate_required_time(steps, max_duration):
|
|
| 124 |
70: 13,
|
| 125 |
95: 21,
|
| 126 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
each_step_s = max_duration_duration_mapping[max_duration]
|
| 128 |
duration_s = (each_step_s * steps) + warmup_s
|
| 129 |
|
|
@@ -143,7 +151,7 @@ def update_required_time(steps, max_duration):
|
|
| 143 |
return get_required_time_string(steps, max_duration)
|
| 144 |
|
| 145 |
|
| 146 |
-
def generate_scene(prompt_text, steps, image_paths, audio_file_path, max_duration = 3, session_id = None):
|
| 147 |
|
| 148 |
prompt_text_check = (prompt_text or "").strip()
|
| 149 |
if not prompt_text_check:
|
|
@@ -152,7 +160,7 @@ def generate_scene(prompt_text, steps, image_paths, audio_file_path, max_duratio
|
|
| 152 |
if not audio_file_path and not image_paths:
|
| 153 |
raise gr.Error("Please provide a reference image or a lipsync audio.")
|
| 154 |
|
| 155 |
-
return run_pipeline(prompt_text, steps, image_paths, audio_file_path, max_duration, session_id)
|
| 156 |
|
| 157 |
def upload_inductor_cache_to_hub(
|
| 158 |
repo_id: str,
|
|
@@ -206,7 +214,7 @@ def upload_inductor_cache_to_hub(
|
|
| 206 |
|
| 207 |
|
| 208 |
@spaces.GPU(duration=get_duration)
|
| 209 |
-
def run_pipeline(prompt_text, steps, image_paths, audio_file_path, max_duration = 3, session_id = None):
|
| 210 |
|
| 211 |
if session_id is None:
|
| 212 |
session_id = uuid.uuid4().hex
|
|
@@ -267,7 +275,6 @@ def run_pipeline(prompt_text, steps, image_paths, audio_file_path, max_duration
|
|
| 267 |
width, height = 832, 480
|
| 268 |
|
| 269 |
|
| 270 |
-
# Run inference
|
| 271 |
runner.inference_loop(
|
| 272 |
prompt_text,
|
| 273 |
img_paths,
|
|
@@ -280,6 +287,7 @@ def run_pipeline(prompt_text, steps, image_paths, audio_file_path, max_duration
|
|
| 280 |
steps,
|
| 281 |
frames = int(max_duration),
|
| 282 |
tea_cache_l1_thresh = 0.0,
|
|
|
|
| 283 |
)
|
| 284 |
|
| 285 |
# Return resulting video path
|
|
|
|
| 5 |
import subprocess
|
| 6 |
import uuid
|
| 7 |
import shutil
|
| 8 |
+
from tqdm import tqdm
|
| 9 |
|
| 10 |
|
| 11 |
from huggingface_hub import snapshot_download, list_repo_files, hf_hub_download
|
|
|
|
| 93 |
)
|
| 94 |
runner = create_object(config)
|
| 95 |
|
|
|
|
| 96 |
os.environ.setdefault("TORCHINDUCTOR_CACHE_DIR", f"{os.getcwd()}/torchinductor_space") # or another writable path
|
| 97 |
|
| 98 |
def restore_inductor_cache_from_hub(repo_id: str, filename: str = "torch_compile_cache.zip",
|
|
|
|
| 109 |
# restore_inductor_cache_from_hub("alexnasa/humo-compiled")
|
| 110 |
|
| 111 |
|
| 112 |
+
def get_duration(prompt_text, steps, image_file, audio_file_path, max_duration, session_id, progress):
|
| 113 |
|
| 114 |
return calculate_required_time(steps, max_duration)
|
| 115 |
|
|
|
|
| 123 |
70: 13,
|
| 124 |
95: 21,
|
| 125 |
}
|
| 126 |
+
|
| 127 |
+
# Humo 1.7
|
| 128 |
+
# max_duration_duration_mapping = {
|
| 129 |
+
# 20: 2,
|
| 130 |
+
# 45: 2,
|
| 131 |
+
# 70: 5,
|
| 132 |
+
# 95: 6,
|
| 133 |
+
# }
|
| 134 |
+
|
| 135 |
each_step_s = max_duration_duration_mapping[max_duration]
|
| 136 |
duration_s = (each_step_s * steps) + warmup_s
|
| 137 |
|
|
|
|
| 151 |
return get_required_time_string(steps, max_duration)
|
| 152 |
|
| 153 |
|
| 154 |
+
def generate_scene(prompt_text, steps, image_paths, audio_file_path, max_duration = 3, session_id = None, progress=gr.Progress(),):
|
| 155 |
|
| 156 |
prompt_text_check = (prompt_text or "").strip()
|
| 157 |
if not prompt_text_check:
|
|
|
|
| 160 |
if not audio_file_path and not image_paths:
|
| 161 |
raise gr.Error("Please provide a reference image or a lipsync audio.")
|
| 162 |
|
| 163 |
+
return run_pipeline(prompt_text, steps, image_paths, audio_file_path, max_duration, session_id, progress)
|
| 164 |
|
| 165 |
def upload_inductor_cache_to_hub(
|
| 166 |
repo_id: str,
|
|
|
|
| 214 |
|
| 215 |
|
| 216 |
@spaces.GPU(duration=get_duration)
|
| 217 |
+
def run_pipeline(prompt_text, steps, image_paths, audio_file_path, max_duration = 3, session_id = None, progress=gr.Progress(),):
|
| 218 |
|
| 219 |
if session_id is None:
|
| 220 |
session_id = uuid.uuid4().hex
|
|
|
|
| 275 |
width, height = 832, 480
|
| 276 |
|
| 277 |
|
|
|
|
| 278 |
runner.inference_loop(
|
| 279 |
prompt_text,
|
| 280 |
img_paths,
|
|
|
|
| 287 |
steps,
|
| 288 |
frames = int(max_duration),
|
| 289 |
tea_cache_l1_thresh = 0.0,
|
| 290 |
+
progress_bar_cmd=progress
|
| 291 |
)
|
| 292 |
|
| 293 |
# Return resulting video path
|
humo/generate.py
CHANGED
|
@@ -680,6 +680,7 @@ class Generator():
|
|
| 680 |
n_prompt="",
|
| 681 |
seed=-1,
|
| 682 |
tea_cache_l1_thresh = 0.0,
|
|
|
|
| 683 |
device = get_device(),
|
| 684 |
):
|
| 685 |
|
|
@@ -796,8 +797,11 @@ class Generator():
|
|
| 796 |
arg_tia = {'seq_len': seq_len, 'audio': audio_emb, 'y': y_c, 'context': context, "tea_cache": TeaCache(sampling_steps, rel_l1_thresh=tea_cache_l1_thresh, model_id=tea_cache_model_id) if tea_cache_l1_thresh is not None and tea_cache_l1_thresh > 0 else None}
|
| 797 |
|
| 798 |
torch.cuda.empty_cache()
|
|
|
|
|
|
|
|
|
|
| 799 |
# self.dit.to(device=get_device())
|
| 800 |
-
for
|
| 801 |
timestep = [t]
|
| 802 |
timestep = torch.stack(timestep)
|
| 803 |
|
|
@@ -823,6 +827,7 @@ class Generator():
|
|
| 823 |
del timestep
|
| 824 |
torch.cuda.empty_cache()
|
| 825 |
|
|
|
|
| 826 |
x0 = latents
|
| 827 |
x0 = [x0_[:,:-latents_ref[0].shape[1]] for x0_ in x0]
|
| 828 |
|
|
@@ -848,7 +853,7 @@ class Generator():
|
|
| 848 |
return videos[0] # if get_local_rank() == 0 else None
|
| 849 |
|
| 850 |
|
| 851 |
-
def inference_loop(self, prompt, ref_img_path, audio_path, output_dir, filename, inference_mode = "TIA", width = 832, height = 480, steps=50, frames = 97, tea_cache_l1_thresh = 0.0, seed = 0):
|
| 852 |
|
| 853 |
video = self.inference(
|
| 854 |
prompt,
|
|
@@ -861,7 +866,8 @@ class Generator():
|
|
| 861 |
sampling_steps=steps,
|
| 862 |
inference_mode = inference_mode,
|
| 863 |
tea_cache_l1_thresh = tea_cache_l1_thresh,
|
| 864 |
-
seed=seed
|
|
|
|
| 865 |
)
|
| 866 |
|
| 867 |
torch.cuda.empty_cache()
|
|
|
|
| 680 |
n_prompt="",
|
| 681 |
seed=-1,
|
| 682 |
tea_cache_l1_thresh = 0.0,
|
| 683 |
+
progress_bar_cmd = None,
|
| 684 |
device = get_device(),
|
| 685 |
):
|
| 686 |
|
|
|
|
| 797 |
arg_tia = {'seq_len': seq_len, 'audio': audio_emb, 'y': y_c, 'context': context, "tea_cache": TeaCache(sampling_steps, rel_l1_thresh=tea_cache_l1_thresh, model_id=tea_cache_model_id) if tea_cache_l1_thresh is not None and tea_cache_l1_thresh > 0 else None}
|
| 798 |
|
| 799 |
torch.cuda.empty_cache()
|
| 800 |
+
|
| 801 |
+
total_steps = len(timesteps)
|
| 802 |
+
|
| 803 |
# self.dit.to(device=get_device())
|
| 804 |
+
for i, t in progress_bar_cmd.tqdm(enumerate(timesteps), desc=f"/{total_steps} Steps"):
|
| 805 |
timestep = [t]
|
| 806 |
timestep = torch.stack(timestep)
|
| 807 |
|
|
|
|
| 827 |
del timestep
|
| 828 |
torch.cuda.empty_cache()
|
| 829 |
|
| 830 |
+
|
| 831 |
x0 = latents
|
| 832 |
x0 = [x0_[:,:-latents_ref[0].shape[1]] for x0_ in x0]
|
| 833 |
|
|
|
|
| 853 |
return videos[0] # if get_local_rank() == 0 else None
|
| 854 |
|
| 855 |
|
| 856 |
+
def inference_loop(self, prompt, ref_img_path, audio_path, output_dir, filename, inference_mode = "TIA", width = 832, height = 480, steps=50, frames = 97, tea_cache_l1_thresh = 0.0, progress_bar_cmd = None, seed = 0):
|
| 857 |
|
| 858 |
video = self.inference(
|
| 859 |
prompt,
|
|
|
|
| 866 |
sampling_steps=steps,
|
| 867 |
inference_mode = inference_mode,
|
| 868 |
tea_cache_l1_thresh = tea_cache_l1_thresh,
|
| 869 |
+
seed=seed,
|
| 870 |
+
progress_bar_cmd = progress_bar_cmd
|
| 871 |
)
|
| 872 |
|
| 873 |
torch.cuda.empty_cache()
|
humo/generate_1_7B.py
CHANGED
|
@@ -18,6 +18,7 @@ import gc
|
|
| 18 |
import random
|
| 19 |
import sys
|
| 20 |
import mediapy
|
|
|
|
| 21 |
import torch
|
| 22 |
import torch.distributed as dist
|
| 23 |
from omegaconf import DictConfig, ListConfig, OmegaConf
|
|
@@ -59,7 +60,15 @@ import torch.cuda.amp as amp
|
|
| 59 |
from humo.models.utils.fm_solvers_unipc import FlowUniPCMultistepScheduler
|
| 60 |
from humo.utils.audio_processor_whisper import AudioProcessor
|
| 61 |
from humo.utils.wav2vec import linear_interpolation_fps
|
|
|
|
| 62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
image_transform = Compose([
|
| 65 |
ToTensor(),
|
|
@@ -96,14 +105,130 @@ def clever_format(nums, format="%.2f"):
|
|
| 96 |
return clever_nums
|
| 97 |
|
| 98 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
class Generator():
|
| 100 |
def __init__(self, config: DictConfig):
|
| 101 |
self.config = config.copy()
|
| 102 |
OmegaConf.set_readonly(self.config, True)
|
| 103 |
self.logger = get_logger(self.__class__.__name__)
|
| 104 |
-
self.configure_models()
|
| 105 |
|
| 106 |
# init_torch(cudnn_benchmark=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
|
| 108 |
def get_fsdp_sharding_config(self, sharding_strategy, device_mesh_config):
|
| 109 |
device_mesh = None
|
|
@@ -115,43 +240,63 @@ class Generator():
|
|
| 115 |
device_mesh = init_device_mesh("cuda", tuple(device_mesh_config))
|
| 116 |
return device_mesh, fsdp_strategy
|
| 117 |
|
|
|
|
| 118 |
def configure_models(self):
|
| 119 |
-
self.configure_dit_model(device="
|
| 120 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
if self.config.generation.get('extract_audio_feat', False):
|
| 122 |
self.configure_wav2vec(device="cpu")
|
| 123 |
-
self.configure_text_model(device="
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
|
| 125 |
-
# Initialize fsdp.
|
| 126 |
-
self.configure_dit_fsdp_model()
|
| 127 |
-
self.configure_text_fsdp_model()
|
| 128 |
|
| 129 |
def configure_dit_model(self, device=get_device()):
|
| 130 |
|
| 131 |
init_unified_parallel(self.config.dit.sp_size)
|
| 132 |
self.sp_size = get_unified_parallel_world_size()
|
| 133 |
-
|
| 134 |
-
# Create
|
| 135 |
init_device = "meta"
|
| 136 |
with torch.device(init_device):
|
| 137 |
self.dit = create_object(self.config.dit.model)
|
|
|
|
| 138 |
self.logger.info(f"Load DiT model on {init_device}.")
|
| 139 |
self.dit.eval().requires_grad_(False)
|
| 140 |
|
| 141 |
# Load dit checkpoint.
|
| 142 |
path = self.config.dit.checkpoint_dir
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
if path.endswith(".pth"):
|
| 144 |
-
|
|
|
|
|
|
|
| 145 |
missing_keys, unexpected_keys = self.dit.load_state_dict(state, strict=False, assign=True)
|
| 146 |
self.logger.info(
|
| 147 |
-
f"dit loaded from {path}. "
|
| 148 |
-
f"Missing keys: {len(missing_keys)}, "
|
| 149 |
-
f"Unexpected keys: {len(unexpected_keys)}"
|
| 150 |
)
|
| 151 |
else:
|
| 152 |
from safetensors.torch import load_file
|
| 153 |
import json
|
| 154 |
-
def load_custom_sharded_weights(model_dir, base_name
|
| 155 |
index_path = f"{model_dir}/{base_name}.safetensors.index.json"
|
| 156 |
with open(index_path, "r") as f:
|
| 157 |
index = json.load(f)
|
|
@@ -160,23 +305,28 @@ class Generator():
|
|
| 160 |
state_dict = {}
|
| 161 |
for shard_file in shard_files:
|
| 162 |
shard_path = f"{model_dir}/{shard_file}"
|
| 163 |
-
|
| 164 |
-
shard_state =
|
|
|
|
|
|
|
| 165 |
state_dict.update(shard_state)
|
| 166 |
return state_dict
|
| 167 |
-
|
|
|
|
| 168 |
self.dit.load_state_dict(state, strict=False, assign=True)
|
| 169 |
-
|
| 170 |
self.dit = meta_non_persistent_buffer_init_fn(self.dit)
|
| 171 |
-
|
| 172 |
-
|
|
|
|
| 173 |
|
| 174 |
# Print model size.
|
| 175 |
params = sum(p.numel() for p in self.dit.parameters())
|
| 176 |
self.logger.info(
|
| 177 |
f"[RANK:{get_global_rank()}] DiT Parameters: {clever_format(params, '%.3f')}"
|
| 178 |
)
|
| 179 |
-
|
|
|
|
| 180 |
def configure_vae_model(self, device=get_device()):
|
| 181 |
self.vae_stride = self.config.vae.vae_stride
|
| 182 |
self.vae = WanVAE(
|
|
@@ -216,15 +366,93 @@ class Generator():
|
|
| 216 |
|
| 217 |
|
| 218 |
def configure_dit_fsdp_model(self):
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 222 |
|
| 223 |
|
| 224 |
def configure_text_fsdp_model(self):
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 228 |
|
| 229 |
|
| 230 |
def load_image_latent_ref_id(self, path: str, size, device):
|
|
@@ -390,7 +618,6 @@ class Generator():
|
|
| 390 |
neg
|
| 391 |
|
| 392 |
return noise_pred
|
| 393 |
-
|
| 394 |
|
| 395 |
@torch.no_grad()
|
| 396 |
def inference(self,
|
|
@@ -401,20 +628,22 @@ class Generator():
|
|
| 401 |
frame_num=81,
|
| 402 |
shift=5.0,
|
| 403 |
sample_solver='unipc',
|
|
|
|
| 404 |
sampling_steps=50,
|
| 405 |
n_prompt="",
|
| 406 |
seed=-1,
|
| 407 |
-
|
| 408 |
device = get_device(),
|
| 409 |
):
|
| 410 |
|
| 411 |
-
self.vae.model.to(device=device)
|
| 412 |
if img_path is not None:
|
| 413 |
latents_ref = self.load_image_latent_ref_id(img_path, size, device)
|
| 414 |
else:
|
| 415 |
latents_ref = [torch.zeros(16, 1, size[1]//8, size[0]//8).to(device)]
|
| 416 |
|
| 417 |
-
self.vae.model.to(device="cpu")
|
|
|
|
| 418 |
latents_ref_neg = [torch.zeros_like(latent_ref) for latent_ref in latents_ref]
|
| 419 |
|
| 420 |
# audio
|
|
@@ -456,10 +685,10 @@ class Generator():
|
|
| 456 |
seed_g = torch.Generator(device=device)
|
| 457 |
seed_g.manual_seed(seed)
|
| 458 |
|
| 459 |
-
self.text_encoder.model.to(device)
|
| 460 |
context = self.text_encoder([input_prompt], device)
|
| 461 |
context_null = self.text_encoder([n_prompt], device)
|
| 462 |
-
self.text_encoder.model.cpu()
|
| 463 |
|
| 464 |
noise = [
|
| 465 |
torch.randn(
|
|
@@ -477,10 +706,9 @@ class Generator():
|
|
| 477 |
yield
|
| 478 |
|
| 479 |
no_sync = getattr(self.dit, 'no_sync', noop_no_sync)
|
| 480 |
-
# step_change = self.config.generation.step_change # 980
|
| 481 |
|
| 482 |
# evaluation mode
|
| 483 |
-
with
|
| 484 |
|
| 485 |
if sample_solver == 'unipc':
|
| 486 |
sample_scheduler = FlowUniPCMultistepScheduler(
|
|
@@ -500,7 +728,7 @@ class Generator():
|
|
| 500 |
arg_null = {'context': context_null, 'seq_len': seq_len, 'audio': audio_emb_neg}
|
| 501 |
|
| 502 |
torch.cuda.empty_cache()
|
| 503 |
-
|
| 504 |
for _, t in enumerate(tqdm(timesteps)):
|
| 505 |
timestep = [t]
|
| 506 |
timestep = torch.stack(timestep)
|
|
@@ -527,12 +755,13 @@ class Generator():
|
|
| 527 |
x0 = [x0_[:,:-latents_ref[0].shape[1]] for x0_ in x0]
|
| 528 |
|
| 529 |
# if offload_model:
|
| 530 |
-
self.dit.cpu()
|
|
|
|
| 531 |
torch.cuda.empty_cache()
|
| 532 |
# if get_local_rank() == 0:
|
| 533 |
-
self.vae.model.to(device=device)
|
| 534 |
videos = self.vae.decode(x0)
|
| 535 |
-
self.vae.model.to(device="cpu")
|
| 536 |
|
| 537 |
del noise, latents, noise_pred
|
| 538 |
del audio_emb, audio_emb_neg, latents_ref, latents_ref_neg, context, context_null
|
|
@@ -547,8 +776,7 @@ class Generator():
|
|
| 547 |
return videos[0] # if get_local_rank() == 0 else None
|
| 548 |
|
| 549 |
|
| 550 |
-
def inference_loop(self, prompt, ref_img_path, audio_path, output_dir, filename, width = 832, height = 480, steps=50, frames = 97, seed = 0):
|
| 551 |
-
print(f'ref_img_path:{ref_img_path}')
|
| 552 |
|
| 553 |
video = self.inference(
|
| 554 |
prompt,
|
|
@@ -559,14 +787,14 @@ class Generator():
|
|
| 559 |
shift=self.config.diffusion.timesteps.sampling.shift,
|
| 560 |
sample_solver='unipc',
|
| 561 |
sampling_steps=steps,
|
| 562 |
-
|
| 563 |
-
|
|
|
|
| 564 |
)
|
| 565 |
|
| 566 |
torch.cuda.empty_cache()
|
| 567 |
gc.collect()
|
| 568 |
|
| 569 |
-
|
| 570 |
# Save samples.
|
| 571 |
if get_sequence_parallel_rank() == 0:
|
| 572 |
pathname = self.save_sample(
|
|
@@ -580,7 +808,6 @@ class Generator():
|
|
| 580 |
del video, prompt
|
| 581 |
torch.cuda.empty_cache()
|
| 582 |
gc.collect()
|
| 583 |
-
|
| 584 |
|
| 585 |
|
| 586 |
def save_sample(self, *, sample: torch.Tensor, audio_path: str, output_dir: str, filename: str):
|
|
@@ -619,4 +846,57 @@ class Generator():
|
|
| 619 |
raise NotImplementedError
|
| 620 |
assert isinstance(pos_prompts, ListConfig)
|
| 621 |
|
| 622 |
-
return pos_prompts
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
import random
|
| 19 |
import sys
|
| 20 |
import mediapy
|
| 21 |
+
import numpy as np
|
| 22 |
import torch
|
| 23 |
import torch.distributed as dist
|
| 24 |
from omegaconf import DictConfig, ListConfig, OmegaConf
|
|
|
|
| 60 |
from humo.models.utils.fm_solvers_unipc import FlowUniPCMultistepScheduler
|
| 61 |
from humo.utils.audio_processor_whisper import AudioProcessor
|
| 62 |
from humo.utils.wav2vec import linear_interpolation_fps
|
| 63 |
+
from torchao.quantization import quantize_
|
| 64 |
|
| 65 |
+
import torch._dynamo as dynamo
|
| 66 |
+
dynamo.config.capture_scalar_outputs = True
|
| 67 |
+
torch.set_float32_matmul_precision("high")
|
| 68 |
+
|
| 69 |
+
import torch
|
| 70 |
+
import torch.nn as nn
|
| 71 |
+
import transformer_engine.pytorch as te
|
| 72 |
|
| 73 |
image_transform = Compose([
|
| 74 |
ToTensor(),
|
|
|
|
| 105 |
return clever_nums
|
| 106 |
|
| 107 |
|
| 108 |
+
|
| 109 |
+
# --- put near your imports ---
|
| 110 |
+
import torch
|
| 111 |
+
import torch.nn as nn
|
| 112 |
+
import contextlib
|
| 113 |
+
import transformer_engine.pytorch as te
|
| 114 |
+
|
| 115 |
+
# FP8 autocast compatibility for different TE versions
|
| 116 |
+
try:
|
| 117 |
+
# Preferred modern API
|
| 118 |
+
from transformer_engine.pytorch import fp8_autocast
|
| 119 |
+
try:
|
| 120 |
+
# Newer TE: use recipe-based API
|
| 121 |
+
from transformer_engine.common.recipe import DelayedScaling, Format
|
| 122 |
+
def make_fp8_ctx(enabled: bool = True):
|
| 123 |
+
if not enabled:
|
| 124 |
+
return contextlib.nullcontext()
|
| 125 |
+
fp8_recipe = DelayedScaling(fp8_format=Format.E4M3) # E4M3 format
|
| 126 |
+
return fp8_autocast(enabled=True, fp8_recipe=fp8_recipe)
|
| 127 |
+
except Exception:
|
| 128 |
+
# Very old variant that might still accept fp8_format directly
|
| 129 |
+
def make_fp8_ctx(enabled: bool = True):
|
| 130 |
+
# If TE doesn't have FP8Format, just no-op
|
| 131 |
+
if not hasattr(te, "FP8Format"):
|
| 132 |
+
return contextlib.nullcontext()
|
| 133 |
+
return te.fp8_autocast(enabled=enabled, fp8_format=te.FP8Format.E4M3)
|
| 134 |
+
except Exception:
|
| 135 |
+
# TE not present or totally incompatible — no-op
|
| 136 |
+
def make_fp8_ctx(enabled: bool = True):
|
| 137 |
+
return contextlib.nullcontext()
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
# TE sometimes exposes Linear at different paths; this normalizes it.
|
| 141 |
+
try:
|
| 142 |
+
TELinear = te.Linear
|
| 143 |
+
except AttributeError: # very old layouts
|
| 144 |
+
from transformer_engine.pytorch.modules.linear import Linear as TELinear # type: ignore
|
| 145 |
+
|
| 146 |
+
# --- near imports ---
|
| 147 |
+
import torch
|
| 148 |
+
import torch.nn as nn
|
| 149 |
+
import transformer_engine.pytorch as te
|
| 150 |
+
|
| 151 |
+
try:
|
| 152 |
+
TELinear = te.Linear
|
| 153 |
+
except AttributeError:
|
| 154 |
+
from transformer_engine.pytorch.modules.linear import Linear as TELinear # type: ignore
|
| 155 |
+
|
| 156 |
+
import torch
|
| 157 |
+
import torch.nn as nn
|
| 158 |
+
import transformer_engine.pytorch as te
|
| 159 |
+
|
| 160 |
+
try:
|
| 161 |
+
TELinear = te.Linear
|
| 162 |
+
except AttributeError:
|
| 163 |
+
from transformer_engine.pytorch.modules.linear import Linear as TELinear # type: ignore
|
| 164 |
+
|
| 165 |
+
def _default_te_allow(fullname: str, lin: nn.Linear) -> bool:
|
| 166 |
+
"""
|
| 167 |
+
Allow TE only where it's shape-safe & beneficial.
|
| 168 |
+
Skip small/special layers (time/timestep/pos embeds, heads).
|
| 169 |
+
Enforce multiples of 16 for in/out features (FP8 kernel friendly).
|
| 170 |
+
Also skip very small projections likely to see M=1.
|
| 171 |
+
"""
|
| 172 |
+
blocked_keywords = (
|
| 173 |
+
"time_embedding", "timestep", "time_embed",
|
| 174 |
+
"time_projection", "pos_embedding", "pos_embed",
|
| 175 |
+
"to_logits", "logits", "final_proj", "proj_out", "output_projection",
|
| 176 |
+
)
|
| 177 |
+
if any(k in fullname for k in blocked_keywords):
|
| 178 |
+
return False
|
| 179 |
+
|
| 180 |
+
# TE FP8 kernels like K, N divisible by 16
|
| 181 |
+
if lin.in_features % 16 != 0 or lin.out_features % 16 != 0:
|
| 182 |
+
return False
|
| 183 |
+
|
| 184 |
+
# Heuristic: avoid tiny layers; keeps attention/MLP, skips small MLPs
|
| 185 |
+
if lin.in_features < 512 or lin.out_features < 512:
|
| 186 |
+
return False
|
| 187 |
+
|
| 188 |
+
# Whitelist: only convert inside transformer blocks if you know their prefix
|
| 189 |
+
# This further reduces risk of catching special heads elsewhere.
|
| 190 |
+
allowed_context = ("blocks", "layers", "transformer", "attn", "mlp", "ffn")
|
| 191 |
+
if not any(tok in fullname for tok in allowed_context):
|
| 192 |
+
return False
|
| 193 |
+
|
| 194 |
+
return True
|
| 195 |
+
|
| 196 |
+
@torch.no_grad()
|
| 197 |
+
def convert_linears_to_te_fp8(module: nn.Module, allow_pred=_default_te_allow, _prefix=""):
|
| 198 |
+
for name, child in list(module.named_children()):
|
| 199 |
+
full = f"{_prefix}.{name}" if _prefix else name
|
| 200 |
+
convert_linears_to_te_fp8(child, allow_pred, full)
|
| 201 |
+
|
| 202 |
+
if isinstance(child, nn.Linear):
|
| 203 |
+
if allow_pred is not None and not allow_pred(full, child):
|
| 204 |
+
continue
|
| 205 |
+
|
| 206 |
+
te_lin = TELinear(
|
| 207 |
+
in_features=child.in_features,
|
| 208 |
+
out_features=child.out_features,
|
| 209 |
+
bias=(child.bias is not None),
|
| 210 |
+
params_dtype=torch.bfloat16,
|
| 211 |
+
).to(child.weight.device)
|
| 212 |
+
|
| 213 |
+
te_lin.weight.copy_(child.weight.to(te_lin.weight.dtype))
|
| 214 |
+
if child.bias is not None:
|
| 215 |
+
te_lin.bias.copy_(child.bias.to(te_lin.bias.dtype))
|
| 216 |
+
|
| 217 |
+
setattr(module, name, te_lin)
|
| 218 |
+
return module
|
| 219 |
+
|
| 220 |
class Generator():
|
| 221 |
def __init__(self, config: DictConfig):
|
| 222 |
self.config = config.copy()
|
| 223 |
OmegaConf.set_readonly(self.config, True)
|
| 224 |
self.logger = get_logger(self.__class__.__name__)
|
|
|
|
| 225 |
|
| 226 |
# init_torch(cudnn_benchmark=False)
|
| 227 |
+
self.configure_models()
|
| 228 |
+
|
| 229 |
+
def entrypoint(self):
|
| 230 |
+
|
| 231 |
+
self.inference_loop()
|
| 232 |
|
| 233 |
def get_fsdp_sharding_config(self, sharding_strategy, device_mesh_config):
|
| 234 |
device_mesh = None
|
|
|
|
| 240 |
device_mesh = init_device_mesh("cuda", tuple(device_mesh_config))
|
| 241 |
return device_mesh, fsdp_strategy
|
| 242 |
|
| 243 |
+
|
| 244 |
def configure_models(self):
|
| 245 |
+
self.configure_dit_model(device="cuda")
|
| 246 |
+
|
| 247 |
+
self.dit.eval().to("cuda")
|
| 248 |
+
convert_linears_to_te_fp8(self.dit)
|
| 249 |
+
|
| 250 |
+
self.dit = torch.compile(self.dit, )
|
| 251 |
+
|
| 252 |
+
|
| 253 |
+
self.configure_vae_model(device="cuda")
|
| 254 |
if self.config.generation.get('extract_audio_feat', False):
|
| 255 |
self.configure_wav2vec(device="cpu")
|
| 256 |
+
self.configure_text_model(device="cuda")
|
| 257 |
+
|
| 258 |
+
# # Initialize fsdp.
|
| 259 |
+
# self.configure_dit_fsdp_model()
|
| 260 |
+
# self.configure_text_fsdp_model()
|
| 261 |
+
|
| 262 |
+
# quantize_(self.text_encoder, Int8WeightOnlyConfig())
|
| 263 |
+
# quantize_(self.dit, Float8DynamicActivationFloat8WeightConfig())
|
| 264 |
|
|
|
|
|
|
|
|
|
|
| 265 |
|
| 266 |
def configure_dit_model(self, device=get_device()):
|
| 267 |
|
| 268 |
init_unified_parallel(self.config.dit.sp_size)
|
| 269 |
self.sp_size = get_unified_parallel_world_size()
|
| 270 |
+
|
| 271 |
+
# Create DiT model on meta, then mark dtype as bfloat16 (no real allocation yet).
|
| 272 |
init_device = "meta"
|
| 273 |
with torch.device(init_device):
|
| 274 |
self.dit = create_object(self.config.dit.model)
|
| 275 |
+
self.dit = self.dit.to(dtype=torch.bfloat16) # or: self.dit.bfloat16()
|
| 276 |
self.logger.info(f"Load DiT model on {init_device}.")
|
| 277 |
self.dit.eval().requires_grad_(False)
|
| 278 |
|
| 279 |
# Load dit checkpoint.
|
| 280 |
path = self.config.dit.checkpoint_dir
|
| 281 |
+
|
| 282 |
+
def _cast_state_dict_to_bf16(state):
|
| 283 |
+
for k, v in state.items():
|
| 284 |
+
if isinstance(v, torch.Tensor) and v.is_floating_point():
|
| 285 |
+
state[k] = v.to(dtype=torch.bfloat16, copy=False)
|
| 286 |
+
return state
|
| 287 |
+
|
| 288 |
if path.endswith(".pth"):
|
| 289 |
+
# Load to CPU first; we’ll move the model later.
|
| 290 |
+
state = torch.load(path, map_location="cpu", mmap=True)
|
| 291 |
+
state = _cast_state_dict_to_bf16(state)
|
| 292 |
missing_keys, unexpected_keys = self.dit.load_state_dict(state, strict=False, assign=True)
|
| 293 |
self.logger.info(
|
| 294 |
+
f"dit loaded from {path}. Missing keys: {len(missing_keys)}, Unexpected keys: {len(unexpected_keys)}"
|
|
|
|
|
|
|
| 295 |
)
|
| 296 |
else:
|
| 297 |
from safetensors.torch import load_file
|
| 298 |
import json
|
| 299 |
+
def load_custom_sharded_weights(model_dir, base_name):
|
| 300 |
index_path = f"{model_dir}/{base_name}.safetensors.index.json"
|
| 301 |
with open(index_path, "r") as f:
|
| 302 |
index = json.load(f)
|
|
|
|
| 305 |
state_dict = {}
|
| 306 |
for shard_file in shard_files:
|
| 307 |
shard_path = f"{model_dir}/{shard_file}"
|
| 308 |
+
# Load on CPU, then cast to bf16; we’ll move the whole module later.
|
| 309 |
+
shard_state = load_file(shard_path, device="cpu")
|
| 310 |
+
shard_state = {k: (v.to(dtype=torch.bfloat16, copy=False) if v.is_floating_point() else v)
|
| 311 |
+
for k, v in shard_state.items()}
|
| 312 |
state_dict.update(shard_state)
|
| 313 |
return state_dict
|
| 314 |
+
|
| 315 |
+
state = load_custom_sharded_weights(path, 'humo')
|
| 316 |
self.dit.load_state_dict(state, strict=False, assign=True)
|
| 317 |
+
|
| 318 |
self.dit = meta_non_persistent_buffer_init_fn(self.dit)
|
| 319 |
+
|
| 320 |
+
target_device = get_device() if device in [get_device(), "cuda"] else device
|
| 321 |
+
self.dit.to(target_device) # dtype already bf16
|
| 322 |
|
| 323 |
# Print model size.
|
| 324 |
params = sum(p.numel() for p in self.dit.parameters())
|
| 325 |
self.logger.info(
|
| 326 |
f"[RANK:{get_global_rank()}] DiT Parameters: {clever_format(params, '%.3f')}"
|
| 327 |
)
|
| 328 |
+
|
| 329 |
+
|
| 330 |
def configure_vae_model(self, device=get_device()):
|
| 331 |
self.vae_stride = self.config.vae.vae_stride
|
| 332 |
self.vae = WanVAE(
|
|
|
|
| 366 |
|
| 367 |
|
| 368 |
def configure_dit_fsdp_model(self):
|
| 369 |
+
from humo.models.wan_modules.model_humo import WanAttentionBlock
|
| 370 |
+
|
| 371 |
+
dit_blocks = (WanAttentionBlock,)
|
| 372 |
+
|
| 373 |
+
# Init model_shard_cpu_group for saving checkpoint with sharded state_dict.
|
| 374 |
+
init_model_shard_cpu_group(
|
| 375 |
+
self.config.dit.fsdp.sharding_strategy,
|
| 376 |
+
self.config.dit.fsdp.get("device_mesh", None),
|
| 377 |
+
)
|
| 378 |
+
|
| 379 |
+
# Assert that dit has wrappable blocks.
|
| 380 |
+
assert any(isinstance(m, dit_blocks) for m in self.dit.modules())
|
| 381 |
+
|
| 382 |
+
# Define wrap policy on all dit blocks.
|
| 383 |
+
def custom_auto_wrap_policy(module, recurse, *args, **kwargs):
|
| 384 |
+
return recurse or isinstance(module, dit_blocks)
|
| 385 |
+
|
| 386 |
+
# Configure FSDP settings.
|
| 387 |
+
device_mesh, fsdp_strategy = self.get_fsdp_sharding_config(
|
| 388 |
+
self.config.dit.fsdp.sharding_strategy,
|
| 389 |
+
self.config.dit.fsdp.get("device_mesh", None),
|
| 390 |
+
)
|
| 391 |
+
settings = dict(
|
| 392 |
+
auto_wrap_policy=custom_auto_wrap_policy,
|
| 393 |
+
sharding_strategy=fsdp_strategy,
|
| 394 |
+
backward_prefetch=BackwardPrefetch.BACKWARD_PRE,
|
| 395 |
+
device_id=get_local_rank(),
|
| 396 |
+
use_orig_params=False,
|
| 397 |
+
sync_module_states=True,
|
| 398 |
+
forward_prefetch=True,
|
| 399 |
+
limit_all_gathers=False, # False for ZERO2.
|
| 400 |
+
mixed_precision=MixedPrecision(
|
| 401 |
+
param_dtype=torch.bfloat16,
|
| 402 |
+
reduce_dtype=torch.float32,
|
| 403 |
+
buffer_dtype=torch.float32,
|
| 404 |
+
),
|
| 405 |
+
device_mesh=device_mesh,
|
| 406 |
+
param_init_fn=meta_param_init_fn,
|
| 407 |
+
)
|
| 408 |
+
|
| 409 |
+
# Apply FSDP.
|
| 410 |
+
self.dit = FullyShardedDataParallel(self.dit, **settings)
|
| 411 |
+
# self.dit.to(get_device())
|
| 412 |
|
| 413 |
|
| 414 |
def configure_text_fsdp_model(self):
|
| 415 |
+
# If FSDP is not enabled, put text_encoder to GPU and return.
|
| 416 |
+
if not self.config.text.fsdp.enabled:
|
| 417 |
+
self.text_encoder.to(get_device())
|
| 418 |
+
return
|
| 419 |
+
|
| 420 |
+
# from transformers.models.t5.modeling_t5 import T5Block
|
| 421 |
+
from humo.models.wan_modules.t5 import T5SelfAttention
|
| 422 |
+
|
| 423 |
+
text_blocks = (torch.nn.Embedding, T5SelfAttention)
|
| 424 |
+
# text_blocks_names = ("QWenBlock", "QWenModel") # QWen cannot be imported. Use str.
|
| 425 |
+
|
| 426 |
+
def custom_auto_wrap_policy(module, recurse, *args, **kwargs):
|
| 427 |
+
return (
|
| 428 |
+
recurse
|
| 429 |
+
or isinstance(module, text_blocks)
|
| 430 |
+
)
|
| 431 |
+
|
| 432 |
+
# Apply FSDP.
|
| 433 |
+
text_encoder_dtype = getattr(torch, self.config.text.dtype)
|
| 434 |
+
device_mesh, fsdp_strategy = self.get_fsdp_sharding_config(
|
| 435 |
+
self.config.text.fsdp.sharding_strategy,
|
| 436 |
+
self.config.text.fsdp.get("device_mesh", None),
|
| 437 |
+
)
|
| 438 |
+
self.text_encoder = FullyShardedDataParallel(
|
| 439 |
+
module=self.text_encoder,
|
| 440 |
+
auto_wrap_policy=custom_auto_wrap_policy,
|
| 441 |
+
sharding_strategy=fsdp_strategy,
|
| 442 |
+
backward_prefetch=BackwardPrefetch.BACKWARD_PRE,
|
| 443 |
+
device_id=get_local_rank(),
|
| 444 |
+
use_orig_params=False,
|
| 445 |
+
sync_module_states=False,
|
| 446 |
+
forward_prefetch=True,
|
| 447 |
+
limit_all_gathers=True,
|
| 448 |
+
mixed_precision=MixedPrecision(
|
| 449 |
+
param_dtype=text_encoder_dtype,
|
| 450 |
+
reduce_dtype=text_encoder_dtype,
|
| 451 |
+
buffer_dtype=text_encoder_dtype,
|
| 452 |
+
),
|
| 453 |
+
device_mesh=device_mesh,
|
| 454 |
+
)
|
| 455 |
+
self.text_encoder.to(get_device()).requires_grad_(False)
|
| 456 |
|
| 457 |
|
| 458 |
def load_image_latent_ref_id(self, path: str, size, device):
|
|
|
|
| 618 |
neg
|
| 619 |
|
| 620 |
return noise_pred
|
|
|
|
| 621 |
|
| 622 |
@torch.no_grad()
|
| 623 |
def inference(self,
|
|
|
|
| 628 |
frame_num=81,
|
| 629 |
shift=5.0,
|
| 630 |
sample_solver='unipc',
|
| 631 |
+
inference_mode='TIA',
|
| 632 |
sampling_steps=50,
|
| 633 |
n_prompt="",
|
| 634 |
seed=-1,
|
| 635 |
+
tea_cache_l1_thresh = 0.0,
|
| 636 |
device = get_device(),
|
| 637 |
):
|
| 638 |
|
| 639 |
+
# self.vae.model.to(device=device)
|
| 640 |
if img_path is not None:
|
| 641 |
latents_ref = self.load_image_latent_ref_id(img_path, size, device)
|
| 642 |
else:
|
| 643 |
latents_ref = [torch.zeros(16, 1, size[1]//8, size[0]//8).to(device)]
|
| 644 |
|
| 645 |
+
# self.vae.model.to(device="cpu")
|
| 646 |
+
|
| 647 |
latents_ref_neg = [torch.zeros_like(latent_ref) for latent_ref in latents_ref]
|
| 648 |
|
| 649 |
# audio
|
|
|
|
| 685 |
seed_g = torch.Generator(device=device)
|
| 686 |
seed_g.manual_seed(seed)
|
| 687 |
|
| 688 |
+
# self.text_encoder.model.to(device)
|
| 689 |
context = self.text_encoder([input_prompt], device)
|
| 690 |
context_null = self.text_encoder([n_prompt], device)
|
| 691 |
+
# self.text_encoder.model.cpu()
|
| 692 |
|
| 693 |
noise = [
|
| 694 |
torch.randn(
|
|
|
|
| 706 |
yield
|
| 707 |
|
| 708 |
no_sync = getattr(self.dit, 'no_sync', noop_no_sync)
|
|
|
|
| 709 |
|
| 710 |
# evaluation mode
|
| 711 |
+
with make_fp8_ctx(True), torch.autocast('cuda', dtype=torch.bfloat16), torch.no_grad(), no_sync():
|
| 712 |
|
| 713 |
if sample_solver == 'unipc':
|
| 714 |
sample_scheduler = FlowUniPCMultistepScheduler(
|
|
|
|
| 728 |
arg_null = {'context': context_null, 'seq_len': seq_len, 'audio': audio_emb_neg}
|
| 729 |
|
| 730 |
torch.cuda.empty_cache()
|
| 731 |
+
|
| 732 |
for _, t in enumerate(tqdm(timesteps)):
|
| 733 |
timestep = [t]
|
| 734 |
timestep = torch.stack(timestep)
|
|
|
|
| 755 |
x0 = [x0_[:,:-latents_ref[0].shape[1]] for x0_ in x0]
|
| 756 |
|
| 757 |
# if offload_model:
|
| 758 |
+
# self.dit.cpu()
|
| 759 |
+
|
| 760 |
torch.cuda.empty_cache()
|
| 761 |
# if get_local_rank() == 0:
|
| 762 |
+
# self.vae.model.to(device=device)
|
| 763 |
videos = self.vae.decode(x0)
|
| 764 |
+
# self.vae.model.to(device="cpu")
|
| 765 |
|
| 766 |
del noise, latents, noise_pred
|
| 767 |
del audio_emb, audio_emb_neg, latents_ref, latents_ref_neg, context, context_null
|
|
|
|
| 776 |
return videos[0] # if get_local_rank() == 0 else None
|
| 777 |
|
| 778 |
|
| 779 |
+
def inference_loop(self, prompt, ref_img_path, audio_path, output_dir, filename, inference_mode = "TIA", width = 832, height = 480, steps=50, frames = 97, tea_cache_l1_thresh = 0.0, seed = 0):
|
|
|
|
| 780 |
|
| 781 |
video = self.inference(
|
| 782 |
prompt,
|
|
|
|
| 787 |
shift=self.config.diffusion.timesteps.sampling.shift,
|
| 788 |
sample_solver='unipc',
|
| 789 |
sampling_steps=steps,
|
| 790 |
+
inference_mode = inference_mode,
|
| 791 |
+
tea_cache_l1_thresh = tea_cache_l1_thresh,
|
| 792 |
+
seed=seed
|
| 793 |
)
|
| 794 |
|
| 795 |
torch.cuda.empty_cache()
|
| 796 |
gc.collect()
|
| 797 |
|
|
|
|
| 798 |
# Save samples.
|
| 799 |
if get_sequence_parallel_rank() == 0:
|
| 800 |
pathname = self.save_sample(
|
|
|
|
| 808 |
del video, prompt
|
| 809 |
torch.cuda.empty_cache()
|
| 810 |
gc.collect()
|
|
|
|
| 811 |
|
| 812 |
|
| 813 |
def save_sample(self, *, sample: torch.Tensor, audio_path: str, output_dir: str, filename: str):
|
|
|
|
| 846 |
raise NotImplementedError
|
| 847 |
assert isinstance(pos_prompts, ListConfig)
|
| 848 |
|
| 849 |
+
return pos_prompts
|
| 850 |
+
|
| 851 |
+
class TeaCache:
|
| 852 |
+
def __init__(self, num_inference_steps, rel_l1_thresh, model_id):
|
| 853 |
+
self.num_inference_steps = num_inference_steps
|
| 854 |
+
self.step = 0
|
| 855 |
+
self.accumulated_rel_l1_distance = 0
|
| 856 |
+
self.previous_modulated_input = None
|
| 857 |
+
self.rel_l1_thresh = rel_l1_thresh
|
| 858 |
+
self.previous_residual = None
|
| 859 |
+
self.previous_hidden_states = None
|
| 860 |
+
|
| 861 |
+
self.coefficients_dict = {
|
| 862 |
+
"Wan2.1-T2V-1.3B": [-5.21862437e+04, 9.23041404e+03, -5.28275948e+02, 1.36987616e+01, -4.99875664e-02],
|
| 863 |
+
"Wan2.1-T2V-14B": [-3.03318725e+05, 4.90537029e+04, -2.65530556e+03, 5.87365115e+01, -3.15583525e-01],
|
| 864 |
+
"Wan2.1-I2V-14B-480P": [2.57151496e+05, -3.54229917e+04, 1.40286849e+03, -1.35890334e+01, 1.32517977e-01],
|
| 865 |
+
"Wan2.1-I2V-14B-720P": [ 8.10705460e+03, 2.13393892e+03, -3.72934672e+02, 1.66203073e+01, -4.17769401e-02],
|
| 866 |
+
}
|
| 867 |
+
if model_id not in self.coefficients_dict:
|
| 868 |
+
supported_model_ids = ", ".join([i for i in self.coefficients_dict])
|
| 869 |
+
raise ValueError(f"{model_id} is not a supported TeaCache model id. Please choose a valid model id in ({supported_model_ids}).")
|
| 870 |
+
self.coefficients = self.coefficients_dict[model_id]
|
| 871 |
+
|
| 872 |
+
def check(self, dit, x, t_mod):
|
| 873 |
+
modulated_inp = t_mod.clone()
|
| 874 |
+
if self.step == 0 or self.step == self.num_inference_steps - 1:
|
| 875 |
+
should_calc = True
|
| 876 |
+
self.accumulated_rel_l1_distance = 0
|
| 877 |
+
else:
|
| 878 |
+
coefficients = self.coefficients
|
| 879 |
+
rescale_func = np.poly1d(coefficients)
|
| 880 |
+
self.accumulated_rel_l1_distance += rescale_func(((modulated_inp-self.previous_modulated_input).abs().mean() / self.previous_modulated_input.abs().mean()).cpu().item())
|
| 881 |
+
if self.accumulated_rel_l1_distance < self.rel_l1_thresh:
|
| 882 |
+
should_calc = False
|
| 883 |
+
else:
|
| 884 |
+
should_calc = True
|
| 885 |
+
self.accumulated_rel_l1_distance = 0
|
| 886 |
+
self.previous_modulated_input = modulated_inp
|
| 887 |
+
self.step += 1
|
| 888 |
+
if self.step == self.num_inference_steps:
|
| 889 |
+
self.step = 0
|
| 890 |
+
if should_calc:
|
| 891 |
+
self.previous_hidden_states = x.clone()
|
| 892 |
+
return not should_calc
|
| 893 |
+
|
| 894 |
+
def store(self, hidden_states):
|
| 895 |
+
if self.previous_hidden_states is None:
|
| 896 |
+
return
|
| 897 |
+
self.previous_residual = hidden_states - self.previous_hidden_states
|
| 898 |
+
self.previous_hidden_states = None
|
| 899 |
+
|
| 900 |
+
def update(self, hidden_states):
|
| 901 |
+
hidden_states = hidden_states + self.previous_residual
|
| 902 |
+
return hidden_states
|