Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,041 Bytes
6a6a2f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
import gradio as gr
import torch
from PIL import Image
from transformers import AutoTokenizer, AutoModelForCausalLM
import cv2
import numpy as np
from typing import Optional
import tempfile
import os
MID = "apple/FastVLM-7B"
IMAGE_TOKEN_INDEX = -200
# Load model and tokenizer
print("Loading FastVLM model...")
tok = AutoTokenizer.from_pretrained(MID, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
MID,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
device_map="auto",
trust_remote_code=True,
)
print("Model loaded successfully!")
def extract_frames(video_path: str, num_frames: int = 8, sampling_method: str = "uniform"):
"""Extract frames from video"""
cap = cv2.VideoCapture(video_path)
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
if total_frames == 0:
cap.release()
return []
frames = []
if sampling_method == "uniform":
# Uniform sampling
indices = np.linspace(0, total_frames - 1, num_frames, dtype=int)
elif sampling_method == "first":
# Take first N frames
indices = list(range(min(num_frames, total_frames)))
elif sampling_method == "last":
# Take last N frames
start = max(0, total_frames - num_frames)
indices = list(range(start, total_frames))
else: # middle
# Take frames from the middle
start = max(0, (total_frames - num_frames) // 2)
indices = list(range(start, min(start + num_frames, total_frames)))
for idx in indices:
cap.set(cv2.CAP_PROP_POS_FRAMES, idx)
ret, frame = cap.read()
if ret:
# Convert BGR to RGB
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frames.append(Image.fromarray(frame_rgb))
cap.release()
return frames
def caption_frame(image: Image.Image, prompt: str) -> str:
"""Generate caption for a single frame"""
# Build chat with custom prompt
messages = [
{"role": "user", "content": f"<image>\n{prompt}"}
]
rendered = tok.apply_chat_template(
messages, add_generation_prompt=True, tokenize=False
)
pre, post = rendered.split("<image>", 1)
# Tokenize the text around the image token
pre_ids = tok(pre, return_tensors="pt", add_special_tokens=False).input_ids
post_ids = tok(post, return_tensors="pt", add_special_tokens=False).input_ids
# Splice in the IMAGE token id
img_tok = torch.tensor([[IMAGE_TOKEN_INDEX]], dtype=pre_ids.dtype)
input_ids = torch.cat([pre_ids, img_tok, post_ids], dim=1).to(model.device)
attention_mask = torch.ones_like(input_ids, device=model.device)
# Preprocess image
px = model.get_vision_tower().image_processor(images=image, return_tensors="pt")["pixel_values"]
px = px.to(model.device, dtype=model.dtype)
# Generate
with torch.no_grad():
out = model.generate(
inputs=input_ids,
attention_mask=attention_mask,
images=px,
max_new_tokens=256,
temperature=0.7,
do_sample=True,
)
caption = tok.decode(out[0], skip_special_tokens=True)
# Extract only the generated part
if prompt in caption:
caption = caption.split(prompt)[-1].strip()
return caption
def process_video(
video_path: str,
num_frames: int,
sampling_method: str,
caption_mode: str,
custom_prompt: str,
progress=gr.Progress()
) -> tuple:
"""Process video and generate captions"""
if not video_path:
return "Please upload a video first.", None, None
progress(0, desc="Extracting frames...")
frames = extract_frames(video_path, num_frames, sampling_method)
if not frames:
return "Failed to extract frames from video.", None, None
# Prepare prompt based on mode
if caption_mode == "Detailed Description":
prompt = "Describe this image in detail, including all visible objects, actions, and the overall scene."
elif caption_mode == "Brief Summary":
prompt = "Provide a brief one-sentence description of what's happening in this image."
elif caption_mode == "Action Recognition":
prompt = "What action or activity is taking place in this image? Focus on the main action."
else: # Custom
prompt = custom_prompt if custom_prompt else "Describe this image."
captions = []
frame_previews = []
for i, frame in enumerate(frames):
progress((i + 1) / (len(frames) + 1), desc=f"Analyzing frame {i + 1}/{len(frames)}...")
caption = caption_frame(frame, prompt)
captions.append(f"**Frame {i + 1}:** {caption}")
frame_previews.append(frame)
progress(1.0, desc="Generating summary...")
# Combine captions into a narrative
full_caption = "\n\n".join(captions)
# Generate overall summary if multiple frames
if len(frames) > 1:
summary_prompt = f"Based on these frame descriptions, provide a coherent summary of the video:\n{full_caption}\n\nSummary:"
# For simplicity, we'll just combine the captions
video_summary = f"## Video Analysis ({len(frames)} frames analyzed)\n\n{full_caption}"
else:
video_summary = f"## Video Analysis\n\n{full_caption}"
return video_summary, frame_previews, video_path
# Create the Gradio interface
with gr.Blocks(css="""
.video-container {
height: calc(100vh - 100px) !important;
}
.sidebar {
height: calc(100vh - 100px) !important;
overflow-y: auto;
}
""") as demo:
gr.Markdown("# π¬ FastVLM Video Captioning")
with gr.Row():
# Main video display
with gr.Column(scale=7):
video_display = gr.Video(
label="Video Input",
height=600,
elem_classes=["video-container"],
autoplay=True,
loop=True
)
# Sidebar with controls
with gr.Sidebar(width=400, elem_classes=["sidebar"]):
gr.Markdown("## βοΈ Settings")
with gr.Group():
gr.Markdown("### Frame Sampling")
num_frames = gr.Slider(
minimum=1,
maximum=16,
value=8,
step=1,
label="Number of Frames to Analyze",
info="More frames = better understanding but slower processing"
)
sampling_method = gr.Radio(
choices=["uniform", "first", "last", "middle"],
value="uniform",
label="Sampling Method",
info="How to select frames from the video"
)
with gr.Group():
gr.Markdown("### Caption Settings")
caption_mode = gr.Radio(
choices=["Detailed Description", "Brief Summary", "Action Recognition", "Custom"],
value="Detailed Description",
label="Caption Mode"
)
custom_prompt = gr.Textbox(
label="Custom Prompt",
placeholder="Enter your custom prompt here...",
visible=False,
lines=3
)
process_btn = gr.Button("π― Analyze Video", variant="primary", size="lg")
gr.Markdown("### π Results")
output_text = gr.Markdown(
value="Upload a video and click 'Analyze Video' to begin.",
elem_classes=["output-text"]
)
with gr.Accordion("πΌοΈ Analyzed Frames", open=False):
frame_gallery = gr.Gallery(
label="Extracted Frames",
show_label=False,
columns=2,
rows=4,
object_fit="contain",
height="auto"
)
# Show/hide custom prompt based on mode selection
def toggle_custom_prompt(mode):
return gr.Textbox(visible=(mode == "Custom"))
caption_mode.change(
toggle_custom_prompt,
inputs=[caption_mode],
outputs=[custom_prompt]
)
# Upload handler
def handle_upload(video):
if video:
return video, "Video loaded! Click 'Analyze Video' to generate captions."
return None, "Upload a video to begin."
video_display.upload(
handle_upload,
inputs=[video_display],
outputs=[video_display, output_text]
)
# Process button
process_btn.click(
process_video,
inputs=[video_display, num_frames, sampling_method, caption_mode, custom_prompt],
outputs=[output_text, frame_gallery, video_display]
)
demo.launch() |