Spaces:
Running
on
Zero
Running
on
Zero
Upload app.py with huggingface_hub
Browse files
app.py
ADDED
|
@@ -0,0 +1,264 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from PIL import Image
|
| 4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 5 |
+
import cv2
|
| 6 |
+
import numpy as np
|
| 7 |
+
from typing import Optional
|
| 8 |
+
import tempfile
|
| 9 |
+
import os
|
| 10 |
+
|
| 11 |
+
MID = "apple/FastVLM-7B"
|
| 12 |
+
IMAGE_TOKEN_INDEX = -200
|
| 13 |
+
|
| 14 |
+
# Load model and tokenizer
|
| 15 |
+
print("Loading FastVLM model...")
|
| 16 |
+
tok = AutoTokenizer.from_pretrained(MID, trust_remote_code=True)
|
| 17 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 18 |
+
MID,
|
| 19 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
| 20 |
+
device_map="auto",
|
| 21 |
+
trust_remote_code=True,
|
| 22 |
+
)
|
| 23 |
+
print("Model loaded successfully!")
|
| 24 |
+
|
| 25 |
+
def extract_frames(video_path: str, num_frames: int = 8, sampling_method: str = "uniform"):
|
| 26 |
+
"""Extract frames from video"""
|
| 27 |
+
cap = cv2.VideoCapture(video_path)
|
| 28 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 29 |
+
|
| 30 |
+
if total_frames == 0:
|
| 31 |
+
cap.release()
|
| 32 |
+
return []
|
| 33 |
+
|
| 34 |
+
frames = []
|
| 35 |
+
|
| 36 |
+
if sampling_method == "uniform":
|
| 37 |
+
# Uniform sampling
|
| 38 |
+
indices = np.linspace(0, total_frames - 1, num_frames, dtype=int)
|
| 39 |
+
elif sampling_method == "first":
|
| 40 |
+
# Take first N frames
|
| 41 |
+
indices = list(range(min(num_frames, total_frames)))
|
| 42 |
+
elif sampling_method == "last":
|
| 43 |
+
# Take last N frames
|
| 44 |
+
start = max(0, total_frames - num_frames)
|
| 45 |
+
indices = list(range(start, total_frames))
|
| 46 |
+
else: # middle
|
| 47 |
+
# Take frames from the middle
|
| 48 |
+
start = max(0, (total_frames - num_frames) // 2)
|
| 49 |
+
indices = list(range(start, min(start + num_frames, total_frames)))
|
| 50 |
+
|
| 51 |
+
for idx in indices:
|
| 52 |
+
cap.set(cv2.CAP_PROP_POS_FRAMES, idx)
|
| 53 |
+
ret, frame = cap.read()
|
| 54 |
+
if ret:
|
| 55 |
+
# Convert BGR to RGB
|
| 56 |
+
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 57 |
+
frames.append(Image.fromarray(frame_rgb))
|
| 58 |
+
|
| 59 |
+
cap.release()
|
| 60 |
+
return frames
|
| 61 |
+
|
| 62 |
+
def caption_frame(image: Image.Image, prompt: str) -> str:
|
| 63 |
+
"""Generate caption for a single frame"""
|
| 64 |
+
# Build chat with custom prompt
|
| 65 |
+
messages = [
|
| 66 |
+
{"role": "user", "content": f"<image>\n{prompt}"}
|
| 67 |
+
]
|
| 68 |
+
rendered = tok.apply_chat_template(
|
| 69 |
+
messages, add_generation_prompt=True, tokenize=False
|
| 70 |
+
)
|
| 71 |
+
pre, post = rendered.split("<image>", 1)
|
| 72 |
+
|
| 73 |
+
# Tokenize the text around the image token
|
| 74 |
+
pre_ids = tok(pre, return_tensors="pt", add_special_tokens=False).input_ids
|
| 75 |
+
post_ids = tok(post, return_tensors="pt", add_special_tokens=False).input_ids
|
| 76 |
+
|
| 77 |
+
# Splice in the IMAGE token id
|
| 78 |
+
img_tok = torch.tensor([[IMAGE_TOKEN_INDEX]], dtype=pre_ids.dtype)
|
| 79 |
+
input_ids = torch.cat([pre_ids, img_tok, post_ids], dim=1).to(model.device)
|
| 80 |
+
attention_mask = torch.ones_like(input_ids, device=model.device)
|
| 81 |
+
|
| 82 |
+
# Preprocess image
|
| 83 |
+
px = model.get_vision_tower().image_processor(images=image, return_tensors="pt")["pixel_values"]
|
| 84 |
+
px = px.to(model.device, dtype=model.dtype)
|
| 85 |
+
|
| 86 |
+
# Generate
|
| 87 |
+
with torch.no_grad():
|
| 88 |
+
out = model.generate(
|
| 89 |
+
inputs=input_ids,
|
| 90 |
+
attention_mask=attention_mask,
|
| 91 |
+
images=px,
|
| 92 |
+
max_new_tokens=256,
|
| 93 |
+
temperature=0.7,
|
| 94 |
+
do_sample=True,
|
| 95 |
+
)
|
| 96 |
+
|
| 97 |
+
caption = tok.decode(out[0], skip_special_tokens=True)
|
| 98 |
+
# Extract only the generated part
|
| 99 |
+
if prompt in caption:
|
| 100 |
+
caption = caption.split(prompt)[-1].strip()
|
| 101 |
+
|
| 102 |
+
return caption
|
| 103 |
+
|
| 104 |
+
def process_video(
|
| 105 |
+
video_path: str,
|
| 106 |
+
num_frames: int,
|
| 107 |
+
sampling_method: str,
|
| 108 |
+
caption_mode: str,
|
| 109 |
+
custom_prompt: str,
|
| 110 |
+
progress=gr.Progress()
|
| 111 |
+
) -> tuple:
|
| 112 |
+
"""Process video and generate captions"""
|
| 113 |
+
|
| 114 |
+
if not video_path:
|
| 115 |
+
return "Please upload a video first.", None, None
|
| 116 |
+
|
| 117 |
+
progress(0, desc="Extracting frames...")
|
| 118 |
+
frames = extract_frames(video_path, num_frames, sampling_method)
|
| 119 |
+
|
| 120 |
+
if not frames:
|
| 121 |
+
return "Failed to extract frames from video.", None, None
|
| 122 |
+
|
| 123 |
+
# Prepare prompt based on mode
|
| 124 |
+
if caption_mode == "Detailed Description":
|
| 125 |
+
prompt = "Describe this image in detail, including all visible objects, actions, and the overall scene."
|
| 126 |
+
elif caption_mode == "Brief Summary":
|
| 127 |
+
prompt = "Provide a brief one-sentence description of what's happening in this image."
|
| 128 |
+
elif caption_mode == "Action Recognition":
|
| 129 |
+
prompt = "What action or activity is taking place in this image? Focus on the main action."
|
| 130 |
+
else: # Custom
|
| 131 |
+
prompt = custom_prompt if custom_prompt else "Describe this image."
|
| 132 |
+
|
| 133 |
+
captions = []
|
| 134 |
+
frame_previews = []
|
| 135 |
+
|
| 136 |
+
for i, frame in enumerate(frames):
|
| 137 |
+
progress((i + 1) / (len(frames) + 1), desc=f"Analyzing frame {i + 1}/{len(frames)}...")
|
| 138 |
+
caption = caption_frame(frame, prompt)
|
| 139 |
+
captions.append(f"**Frame {i + 1}:** {caption}")
|
| 140 |
+
frame_previews.append(frame)
|
| 141 |
+
|
| 142 |
+
progress(1.0, desc="Generating summary...")
|
| 143 |
+
|
| 144 |
+
# Combine captions into a narrative
|
| 145 |
+
full_caption = "\n\n".join(captions)
|
| 146 |
+
|
| 147 |
+
# Generate overall summary if multiple frames
|
| 148 |
+
if len(frames) > 1:
|
| 149 |
+
summary_prompt = f"Based on these frame descriptions, provide a coherent summary of the video:\n{full_caption}\n\nSummary:"
|
| 150 |
+
# For simplicity, we'll just combine the captions
|
| 151 |
+
video_summary = f"## Video Analysis ({len(frames)} frames analyzed)\n\n{full_caption}"
|
| 152 |
+
else:
|
| 153 |
+
video_summary = f"## Video Analysis\n\n{full_caption}"
|
| 154 |
+
|
| 155 |
+
return video_summary, frame_previews, video_path
|
| 156 |
+
|
| 157 |
+
# Create the Gradio interface
|
| 158 |
+
with gr.Blocks(css="""
|
| 159 |
+
.video-container {
|
| 160 |
+
height: calc(100vh - 100px) !important;
|
| 161 |
+
}
|
| 162 |
+
.sidebar {
|
| 163 |
+
height: calc(100vh - 100px) !important;
|
| 164 |
+
overflow-y: auto;
|
| 165 |
+
}
|
| 166 |
+
""") as demo:
|
| 167 |
+
gr.Markdown("# 🎬 FastVLM Video Captioning")
|
| 168 |
+
|
| 169 |
+
with gr.Row():
|
| 170 |
+
# Main video display
|
| 171 |
+
with gr.Column(scale=7):
|
| 172 |
+
video_display = gr.Video(
|
| 173 |
+
label="Video Input",
|
| 174 |
+
height=600,
|
| 175 |
+
elem_classes=["video-container"],
|
| 176 |
+
autoplay=True,
|
| 177 |
+
loop=True
|
| 178 |
+
)
|
| 179 |
+
|
| 180 |
+
# Sidebar with controls
|
| 181 |
+
with gr.Sidebar(width=400, elem_classes=["sidebar"]):
|
| 182 |
+
gr.Markdown("## ⚙️ Settings")
|
| 183 |
+
|
| 184 |
+
with gr.Group():
|
| 185 |
+
gr.Markdown("### Frame Sampling")
|
| 186 |
+
num_frames = gr.Slider(
|
| 187 |
+
minimum=1,
|
| 188 |
+
maximum=16,
|
| 189 |
+
value=8,
|
| 190 |
+
step=1,
|
| 191 |
+
label="Number of Frames to Analyze",
|
| 192 |
+
info="More frames = better understanding but slower processing"
|
| 193 |
+
)
|
| 194 |
+
|
| 195 |
+
sampling_method = gr.Radio(
|
| 196 |
+
choices=["uniform", "first", "last", "middle"],
|
| 197 |
+
value="uniform",
|
| 198 |
+
label="Sampling Method",
|
| 199 |
+
info="How to select frames from the video"
|
| 200 |
+
)
|
| 201 |
+
|
| 202 |
+
with gr.Group():
|
| 203 |
+
gr.Markdown("### Caption Settings")
|
| 204 |
+
caption_mode = gr.Radio(
|
| 205 |
+
choices=["Detailed Description", "Brief Summary", "Action Recognition", "Custom"],
|
| 206 |
+
value="Detailed Description",
|
| 207 |
+
label="Caption Mode"
|
| 208 |
+
)
|
| 209 |
+
|
| 210 |
+
custom_prompt = gr.Textbox(
|
| 211 |
+
label="Custom Prompt",
|
| 212 |
+
placeholder="Enter your custom prompt here...",
|
| 213 |
+
visible=False,
|
| 214 |
+
lines=3
|
| 215 |
+
)
|
| 216 |
+
|
| 217 |
+
process_btn = gr.Button("🎯 Analyze Video", variant="primary", size="lg")
|
| 218 |
+
|
| 219 |
+
gr.Markdown("### 📝 Results")
|
| 220 |
+
output_text = gr.Markdown(
|
| 221 |
+
value="Upload a video and click 'Analyze Video' to begin.",
|
| 222 |
+
elem_classes=["output-text"]
|
| 223 |
+
)
|
| 224 |
+
|
| 225 |
+
with gr.Accordion("🖼️ Analyzed Frames", open=False):
|
| 226 |
+
frame_gallery = gr.Gallery(
|
| 227 |
+
label="Extracted Frames",
|
| 228 |
+
show_label=False,
|
| 229 |
+
columns=2,
|
| 230 |
+
rows=4,
|
| 231 |
+
object_fit="contain",
|
| 232 |
+
height="auto"
|
| 233 |
+
)
|
| 234 |
+
|
| 235 |
+
# Show/hide custom prompt based on mode selection
|
| 236 |
+
def toggle_custom_prompt(mode):
|
| 237 |
+
return gr.Textbox(visible=(mode == "Custom"))
|
| 238 |
+
|
| 239 |
+
caption_mode.change(
|
| 240 |
+
toggle_custom_prompt,
|
| 241 |
+
inputs=[caption_mode],
|
| 242 |
+
outputs=[custom_prompt]
|
| 243 |
+
)
|
| 244 |
+
|
| 245 |
+
# Upload handler
|
| 246 |
+
def handle_upload(video):
|
| 247 |
+
if video:
|
| 248 |
+
return video, "Video loaded! Click 'Analyze Video' to generate captions."
|
| 249 |
+
return None, "Upload a video to begin."
|
| 250 |
+
|
| 251 |
+
video_display.upload(
|
| 252 |
+
handle_upload,
|
| 253 |
+
inputs=[video_display],
|
| 254 |
+
outputs=[video_display, output_text]
|
| 255 |
+
)
|
| 256 |
+
|
| 257 |
+
# Process button
|
| 258 |
+
process_btn.click(
|
| 259 |
+
process_video,
|
| 260 |
+
inputs=[video_display, num_frames, sampling_method, caption_mode, custom_prompt],
|
| 261 |
+
outputs=[output_text, frame_gallery, video_display]
|
| 262 |
+
)
|
| 263 |
+
|
| 264 |
+
demo.launch()
|