Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,77 +4,60 @@ from neuralop.models import FNO
|
|
| 4 |
import matplotlib.pyplot as plt
|
| 5 |
import numpy as np
|
| 6 |
import os
|
| 7 |
-
import requests
|
| 8 |
-
from tqdm import tqdm
|
| 9 |
-
|
| 10 |
-
import
|
| 11 |
|
| 12 |
# --- Configuration ---
|
| 13 |
-
MODEL_PATH = "fno_ckpt_single_res"
|
| 14 |
-
|
| 15 |
-
|
|
|
|
| 16 |
|
| 17 |
# --- Global Variables for Model and Data (loaded once) ---
|
| 18 |
MODEL = None
|
| 19 |
FULL_DATASET_X = None
|
| 20 |
|
| 21 |
-
# --- Function to Download Dataset ---
|
| 22 |
-
def
|
| 23 |
-
"""Downloads a file from
|
| 24 |
-
|
| 25 |
-
print(f"{local_filename} already exists. Skipping download.")
|
| 26 |
-
return
|
| 27 |
-
|
| 28 |
-
print(f"Downloading {url} to {local_filename}...")
|
| 29 |
try:
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
f.write(chunk)
|
| 41 |
-
pbar.update(len(chunk))
|
| 42 |
-
print(f"Downloaded {local_filename} successfully.")
|
| 43 |
-
except requests.exceptions.RequestException as e:
|
| 44 |
-
print(f"Error downloading file: {e}")
|
| 45 |
-
raise gr.Error(f"Failed to download dataset from Zenodo: {e}")
|
| 46 |
-
|
| 47 |
-
# --- 1. Model Loading Function ---
|
| 48 |
def load_model():
|
| 49 |
-
"""Loads the pre-trained FNO model."""
|
| 50 |
global MODEL
|
| 51 |
if MODEL is None:
|
| 52 |
-
print("Loading FNO model...")
|
| 53 |
try:
|
| 54 |
-
# Load to CPU, then move to GPU if available and needed
|
| 55 |
MODEL = torch.load(MODEL_PATH, weights_only=False, map_location='cpu')
|
| 56 |
-
# Move model to GPU if available
|
| 57 |
-
if torch.cuda.is_available():
|
| 58 |
-
MODEL.cuda()
|
| 59 |
-
print("Model moved to GPU.")
|
| 60 |
-
else:
|
| 61 |
-
print("CUDA not available. Model will run on CPU.")
|
| 62 |
MODEL.eval()
|
| 63 |
-
print("Model loaded successfully.")
|
| 64 |
except Exception as e:
|
| 65 |
print(f"Error loading model: {e}")
|
| 66 |
raise gr.Error(f"Failed to load model: {e}")
|
| 67 |
return MODEL
|
| 68 |
|
| 69 |
-
# --- 2. Dataset Loading Function ---
|
| 70 |
def load_dataset():
|
| 71 |
-
"""Downloads and loads the initial conditions dataset."""
|
| 72 |
global FULL_DATASET_X
|
| 73 |
if FULL_DATASET_X is None:
|
| 74 |
-
|
|
|
|
| 75 |
print("Loading dataset from local file...")
|
| 76 |
try:
|
| 77 |
-
data = torch.load(
|
| 78 |
if isinstance(data, dict) and 'x' in data:
|
| 79 |
FULL_DATASET_X = data['x']
|
| 80 |
elif isinstance(data, torch.Tensor):
|
|
@@ -87,8 +70,8 @@ def load_dataset():
|
|
| 87 |
raise gr.Error(f"Failed to load dataset from local file: {e}")
|
| 88 |
return FULL_DATASET_X
|
| 89 |
|
| 90 |
-
# --- 3. Inference Function for Gradio (
|
| 91 |
-
@spaces.GPU()
|
| 92 |
def run_inference(sample_index: int):
|
| 93 |
"""
|
| 94 |
Performs inference for a selected sample index from the dataset.
|
|
@@ -97,30 +80,28 @@ def run_inference(sample_index: int):
|
|
| 97 |
model = load_model()
|
| 98 |
dataset = load_dataset()
|
| 99 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
if not (0 <= sample_index < dataset.shape[0]):
|
| 101 |
raise gr.Error(f"Sample index out of range. Please choose between 0 and {dataset.shape[0]-1}.")
|
| 102 |
|
| 103 |
-
# Extract single initial condition and add channel dimension
|
| 104 |
-
# (shape: [1, H, W] -> [1, 1, H, W])
|
| 105 |
single_initial_condition = dataset[sample_index:sample_index+1, :, :].unsqueeze(1)
|
| 106 |
|
| 107 |
-
# Move input tensor to GPU if model is on GPU
|
| 108 |
if torch.cuda.is_available():
|
| 109 |
single_initial_condition = single_initial_condition.cuda()
|
| 110 |
print("Input moved to GPU.")
|
| 111 |
else:
|
| 112 |
print("CUDA not available. Input remains on CPU.")
|
| 113 |
|
| 114 |
-
|
| 115 |
print(f"Running inference for sample index {sample_index}...")
|
| 116 |
with torch.no_grad():
|
| 117 |
predicted_solution = model(single_initial_condition)
|
| 118 |
|
| 119 |
-
# Move results back to CPU for plotting with Matplotlib
|
| 120 |
input_numpy = single_initial_condition.squeeze().cpu().numpy()
|
| 121 |
output_numpy = predicted_solution.squeeze().cpu().numpy()
|
| 122 |
|
| 123 |
-
# Create Matplotlib figures
|
| 124 |
fig_input, ax_input = plt.subplots()
|
| 125 |
im_input = ax_input.imshow(input_numpy, cmap='viridis')
|
| 126 |
ax_input.set_title(f"Initial Condition (Sample {sample_index})")
|
|
@@ -166,10 +147,8 @@ with gr.Blocks() as demo:
|
|
| 166 |
)
|
| 167 |
|
| 168 |
def load_initial_data_and_predict():
|
| 169 |
-
# Ensure model and dataset are loaded when the space starts
|
| 170 |
load_model()
|
| 171 |
load_dataset()
|
| 172 |
-
# Run inference for the default value (index 0)
|
| 173 |
return run_inference(0)
|
| 174 |
|
| 175 |
demo.load(load_initial_data_and_predict, inputs=None, outputs=[input_image_plot, output_image_plot])
|
|
|
|
| 4 |
import matplotlib.pyplot as plt
|
| 5 |
import numpy as np
|
| 6 |
import os
|
| 7 |
+
# import requests # <--- NO LONGER NEEDED for Zenodo download
|
| 8 |
+
# from tqdm import tqdm # <--- NO LONGER NEEDED for Zenodo download
|
| 9 |
+
import spaces
|
| 10 |
+
from huggingface_hub import hf_hub_download # <--- ADD THIS IMPORT
|
| 11 |
|
| 12 |
# --- Configuration ---
|
| 13 |
+
MODEL_PATH = "fno_ckpt_single_res" # This model file still needs to be in your Space's repo
|
| 14 |
+
# Updated: Hugging Face Dataset/Model ID and filename
|
| 15 |
+
HF_DATASET_REPO_ID = "ajsbsd/navier-stokes-2d-dataset" # Your new repo ID
|
| 16 |
+
HF_DATASET_FILENAME = "navier_stokes_2d.pt"
|
| 17 |
|
| 18 |
# --- Global Variables for Model and Data (loaded once) ---
|
| 19 |
MODEL = None
|
| 20 |
FULL_DATASET_X = None
|
| 21 |
|
| 22 |
+
# --- Function to Download Dataset (MODIFIED to use hf_hub_download) ---
|
| 23 |
+
def download_file_from_hf_hub(repo_id, filename):
|
| 24 |
+
"""Downloads a file from Hugging Face Hub."""
|
| 25 |
+
print(f"Downloading {filename} from {repo_id} on Hugging Face Hub...")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
try:
|
| 27 |
+
# hf_hub_download returns the local path to the downloaded file
|
| 28 |
+
local_path = hf_hub_download(repo_id=repo_id, filename=filename)
|
| 29 |
+
print(f"Downloaded {filename} to {local_path} successfully.")
|
| 30 |
+
return local_path
|
| 31 |
+
except Exception as e:
|
| 32 |
+
print(f"Error downloading file from HF Hub: {e}")
|
| 33 |
+
raise gr.Error(f"Failed to download dataset from Hugging Face Hub: {e}")
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
# --- 1. Model Loading Function (No change from last successful CUDA fix) ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
def load_model():
|
| 38 |
+
"""Loads the pre-trained FNO model to CPU."""
|
| 39 |
global MODEL
|
| 40 |
if MODEL is None:
|
| 41 |
+
print("Loading FNO model to CPU...")
|
| 42 |
try:
|
|
|
|
| 43 |
MODEL = torch.load(MODEL_PATH, weights_only=False, map_location='cpu')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
MODEL.eval()
|
| 45 |
+
print("Model loaded successfully to CPU.")
|
| 46 |
except Exception as e:
|
| 47 |
print(f"Error loading model: {e}")
|
| 48 |
raise gr.Error(f"Failed to load model: {e}")
|
| 49 |
return MODEL
|
| 50 |
|
| 51 |
+
# --- 2. Dataset Loading Function (MODIFIED) ---
|
| 52 |
def load_dataset():
|
| 53 |
+
"""Downloads and loads the initial conditions dataset from HF Hub."""
|
| 54 |
global FULL_DATASET_X
|
| 55 |
if FULL_DATASET_X is None:
|
| 56 |
+
# Call the new HF Hub download function
|
| 57 |
+
local_dataset_path = download_file_from_hf_hub(HF_DATASET_REPO_ID, HF_DATASET_FILENAME)
|
| 58 |
print("Loading dataset from local file...")
|
| 59 |
try:
|
| 60 |
+
data = torch.load(local_dataset_path, map_location='cpu')
|
| 61 |
if isinstance(data, dict) and 'x' in data:
|
| 62 |
FULL_DATASET_X = data['x']
|
| 63 |
elif isinstance(data, torch.Tensor):
|
|
|
|
| 70 |
raise gr.Error(f"Failed to load dataset from local file: {e}")
|
| 71 |
return FULL_DATASET_X
|
| 72 |
|
| 73 |
+
# --- 3. Inference Function for Gradio (No changes needed here) ---
|
| 74 |
+
@spaces.GPU()
|
| 75 |
def run_inference(sample_index: int):
|
| 76 |
"""
|
| 77 |
Performs inference for a selected sample index from the dataset.
|
|
|
|
| 80 |
model = load_model()
|
| 81 |
dataset = load_dataset()
|
| 82 |
|
| 83 |
+
if torch.cuda.is_available() and next(model.parameters()).device == torch.device('cpu'):
|
| 84 |
+
model.cuda()
|
| 85 |
+
print("Model moved to GPU within run_inference.")
|
| 86 |
+
|
| 87 |
if not (0 <= sample_index < dataset.shape[0]):
|
| 88 |
raise gr.Error(f"Sample index out of range. Please choose between 0 and {dataset.shape[0]-1}.")
|
| 89 |
|
|
|
|
|
|
|
| 90 |
single_initial_condition = dataset[sample_index:sample_index+1, :, :].unsqueeze(1)
|
| 91 |
|
|
|
|
| 92 |
if torch.cuda.is_available():
|
| 93 |
single_initial_condition = single_initial_condition.cuda()
|
| 94 |
print("Input moved to GPU.")
|
| 95 |
else:
|
| 96 |
print("CUDA not available. Input remains on CPU.")
|
| 97 |
|
|
|
|
| 98 |
print(f"Running inference for sample index {sample_index}...")
|
| 99 |
with torch.no_grad():
|
| 100 |
predicted_solution = model(single_initial_condition)
|
| 101 |
|
|
|
|
| 102 |
input_numpy = single_initial_condition.squeeze().cpu().numpy()
|
| 103 |
output_numpy = predicted_solution.squeeze().cpu().numpy()
|
| 104 |
|
|
|
|
| 105 |
fig_input, ax_input = plt.subplots()
|
| 106 |
im_input = ax_input.imshow(input_numpy, cmap='viridis')
|
| 107 |
ax_input.set_title(f"Initial Condition (Sample {sample_index})")
|
|
|
|
| 147 |
)
|
| 148 |
|
| 149 |
def load_initial_data_and_predict():
|
|
|
|
| 150 |
load_model()
|
| 151 |
load_dataset()
|
|
|
|
| 152 |
return run_inference(0)
|
| 153 |
|
| 154 |
demo.load(load_initial_data_and_predict, inputs=None, outputs=[input_image_plot, output_image_plot])
|