Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,14 +4,15 @@ from neuralop.models import FNO
|
|
| 4 |
import matplotlib.pyplot as plt
|
| 5 |
import numpy as np
|
| 6 |
import os
|
| 7 |
-
import requests
|
| 8 |
-
from tqdm import tqdm
|
|
|
|
|
|
|
| 9 |
|
| 10 |
# --- Configuration ---
|
| 11 |
-
MODEL_PATH = "fno_ckpt_single_res"
|
| 12 |
-
# Zenodo direct download URL for the Navier-Stokes 2D dataset
|
| 13 |
DATASET_URL = "https://zenodo.org/record/12825163/files/navier_stokes_2d.pt?download=1"
|
| 14 |
-
LOCAL_DATASET_PATH = "navier_stokes_2d.pt"
|
| 15 |
|
| 16 |
# --- Global Variables for Model and Data (loaded once) ---
|
| 17 |
MODEL = None
|
|
@@ -27,10 +28,10 @@ def download_file(url, local_filename):
|
|
| 27 |
print(f"Downloading {url} to {local_filename}...")
|
| 28 |
try:
|
| 29 |
response = requests.get(url, stream=True)
|
| 30 |
-
response.raise_for_status()
|
| 31 |
|
| 32 |
total_size = int(response.headers.get('content-length', 0))
|
| 33 |
-
block_size = 1024
|
| 34 |
|
| 35 |
with open(local_filename, 'wb') as f:
|
| 36 |
with tqdm(total=total_size, unit='iB', unit_scale=True, desc=local_filename) as pbar:
|
|
@@ -43,15 +44,21 @@ def download_file(url, local_filename):
|
|
| 43 |
print(f"Error downloading file: {e}")
|
| 44 |
raise gr.Error(f"Failed to download dataset from Zenodo: {e}")
|
| 45 |
|
| 46 |
-
|
| 47 |
-
# --- 1. Model Loading Function (No change here for model) ---
|
| 48 |
def load_model():
|
| 49 |
"""Loads the pre-trained FNO model."""
|
| 50 |
global MODEL
|
| 51 |
if MODEL is None:
|
| 52 |
print("Loading FNO model...")
|
| 53 |
try:
|
|
|
|
| 54 |
MODEL = torch.load(MODEL_PATH, weights_only=False, map_location='cpu')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
MODEL.eval()
|
| 56 |
print("Model loaded successfully.")
|
| 57 |
except Exception as e:
|
|
@@ -59,12 +66,12 @@ def load_model():
|
|
| 59 |
raise gr.Error(f"Failed to load model: {e}")
|
| 60 |
return MODEL
|
| 61 |
|
| 62 |
-
# --- 2. Dataset Loading Function
|
| 63 |
def load_dataset():
|
| 64 |
"""Downloads and loads the initial conditions dataset."""
|
| 65 |
global FULL_DATASET_X
|
| 66 |
if FULL_DATASET_X is None:
|
| 67 |
-
download_file(DATASET_URL, LOCAL_DATASET_PATH)
|
| 68 |
print("Loading dataset from local file...")
|
| 69 |
try:
|
| 70 |
data = torch.load(LOCAL_DATASET_PATH, map_location='cpu')
|
|
@@ -80,27 +87,40 @@ def load_dataset():
|
|
| 80 |
raise gr.Error(f"Failed to load dataset from local file: {e}")
|
| 81 |
return FULL_DATASET_X
|
| 82 |
|
| 83 |
-
# --- 3. Inference Function for Gradio (
|
|
|
|
| 84 |
def run_inference(sample_index: int):
|
| 85 |
"""
|
| 86 |
Performs inference for a selected sample index from the dataset.
|
| 87 |
Returns two Matplotlib figures: one for input, one for output.
|
| 88 |
"""
|
| 89 |
model = load_model()
|
| 90 |
-
dataset = load_dataset()
|
| 91 |
|
| 92 |
if not (0 <= sample_index < dataset.shape[0]):
|
| 93 |
raise gr.Error(f"Sample index out of range. Please choose between 0 and {dataset.shape[0]-1}.")
|
| 94 |
|
|
|
|
|
|
|
| 95 |
single_initial_condition = dataset[sample_index:sample_index+1, :, :].unsqueeze(1)
|
| 96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
print(f"Running inference for sample index {sample_index}...")
|
| 98 |
with torch.no_grad():
|
| 99 |
predicted_solution = model(single_initial_condition)
|
| 100 |
|
|
|
|
| 101 |
input_numpy = single_initial_condition.squeeze().cpu().numpy()
|
| 102 |
output_numpy = predicted_solution.squeeze().cpu().numpy()
|
| 103 |
|
|
|
|
| 104 |
fig_input, ax_input = plt.subplots()
|
| 105 |
im_input = ax_input.imshow(input_numpy, cmap='viridis')
|
| 106 |
ax_input.set_title(f"Initial Condition (Sample {sample_index})")
|
|
@@ -127,8 +147,6 @@ with gr.Blocks() as demo:
|
|
| 127 |
|
| 128 |
with gr.Row():
|
| 129 |
with gr.Column():
|
| 130 |
-
# Max value can be dynamic based on dataset size if needed,
|
| 131 |
-
# but 9999 for 10,000 samples is correct.
|
| 132 |
sample_input_slider = gr.Slider(
|
| 133 |
minimum=0,
|
| 134 |
maximum=9999,
|
|
@@ -148,8 +166,10 @@ with gr.Blocks() as demo:
|
|
| 148 |
)
|
| 149 |
|
| 150 |
def load_initial_data_and_predict():
|
|
|
|
| 151 |
load_model()
|
| 152 |
-
load_dataset()
|
|
|
|
| 153 |
return run_inference(0)
|
| 154 |
|
| 155 |
demo.load(load_initial_data_and_predict, inputs=None, outputs=[input_image_plot, output_image_plot])
|
|
|
|
| 4 |
import matplotlib.pyplot as plt
|
| 5 |
import numpy as np
|
| 6 |
import os
|
| 7 |
+
import requests
|
| 8 |
+
from tqdm import tqdm
|
| 9 |
+
from huggingface_hub import HfApi, HfFolder, Repository, create_repo # <--- ADD THIS IMPORT
|
| 10 |
+
import spaces # <--- ADD THIS IMPORT
|
| 11 |
|
| 12 |
# --- Configuration ---
|
| 13 |
+
MODEL_PATH = "fno_ckpt_single_res"
|
|
|
|
| 14 |
DATASET_URL = "https://zenodo.org/record/12825163/files/navier_stokes_2d.pt?download=1"
|
| 15 |
+
LOCAL_DATASET_PATH = "navier_stokes_2d.pt"
|
| 16 |
|
| 17 |
# --- Global Variables for Model and Data (loaded once) ---
|
| 18 |
MODEL = None
|
|
|
|
| 28 |
print(f"Downloading {url} to {local_filename}...")
|
| 29 |
try:
|
| 30 |
response = requests.get(url, stream=True)
|
| 31 |
+
response.raise_for_status()
|
| 32 |
|
| 33 |
total_size = int(response.headers.get('content-length', 0))
|
| 34 |
+
block_size = 1024
|
| 35 |
|
| 36 |
with open(local_filename, 'wb') as f:
|
| 37 |
with tqdm(total=total_size, unit='iB', unit_scale=True, desc=local_filename) as pbar:
|
|
|
|
| 44 |
print(f"Error downloading file: {e}")
|
| 45 |
raise gr.Error(f"Failed to download dataset from Zenodo: {e}")
|
| 46 |
|
| 47 |
+
# --- 1. Model Loading Function ---
|
|
|
|
| 48 |
def load_model():
|
| 49 |
"""Loads the pre-trained FNO model."""
|
| 50 |
global MODEL
|
| 51 |
if MODEL is None:
|
| 52 |
print("Loading FNO model...")
|
| 53 |
try:
|
| 54 |
+
# Load to CPU, then move to GPU if available and needed
|
| 55 |
MODEL = torch.load(MODEL_PATH, weights_only=False, map_location='cpu')
|
| 56 |
+
# Move model to GPU if available
|
| 57 |
+
if torch.cuda.is_available():
|
| 58 |
+
MODEL.cuda()
|
| 59 |
+
print("Model moved to GPU.")
|
| 60 |
+
else:
|
| 61 |
+
print("CUDA not available. Model will run on CPU.")
|
| 62 |
MODEL.eval()
|
| 63 |
print("Model loaded successfully.")
|
| 64 |
except Exception as e:
|
|
|
|
| 66 |
raise gr.Error(f"Failed to load model: {e}")
|
| 67 |
return MODEL
|
| 68 |
|
| 69 |
+
# --- 2. Dataset Loading Function ---
|
| 70 |
def load_dataset():
|
| 71 |
"""Downloads and loads the initial conditions dataset."""
|
| 72 |
global FULL_DATASET_X
|
| 73 |
if FULL_DATASET_X is None:
|
| 74 |
+
download_file(DATASET_URL, LOCAL_DATASET_PATH)
|
| 75 |
print("Loading dataset from local file...")
|
| 76 |
try:
|
| 77 |
data = torch.load(LOCAL_DATASET_PATH, map_location='cpu')
|
|
|
|
| 87 |
raise gr.Error(f"Failed to load dataset from local file: {e}")
|
| 88 |
return FULL_DATASET_X
|
| 89 |
|
| 90 |
+
# --- 3. Inference Function for Gradio (MODIFIED with @spaces.GPU()) ---
|
| 91 |
+
@spaces.GPU() # <--- ADD THIS DECORATOR
|
| 92 |
def run_inference(sample_index: int):
|
| 93 |
"""
|
| 94 |
Performs inference for a selected sample index from the dataset.
|
| 95 |
Returns two Matplotlib figures: one for input, one for output.
|
| 96 |
"""
|
| 97 |
model = load_model()
|
| 98 |
+
dataset = load_dataset()
|
| 99 |
|
| 100 |
if not (0 <= sample_index < dataset.shape[0]):
|
| 101 |
raise gr.Error(f"Sample index out of range. Please choose between 0 and {dataset.shape[0]-1}.")
|
| 102 |
|
| 103 |
+
# Extract single initial condition and add channel dimension
|
| 104 |
+
# (shape: [1, H, W] -> [1, 1, H, W])
|
| 105 |
single_initial_condition = dataset[sample_index:sample_index+1, :, :].unsqueeze(1)
|
| 106 |
|
| 107 |
+
# Move input tensor to GPU if model is on GPU
|
| 108 |
+
if torch.cuda.is_available():
|
| 109 |
+
single_initial_condition = single_initial_condition.cuda()
|
| 110 |
+
print("Input moved to GPU.")
|
| 111 |
+
else:
|
| 112 |
+
print("CUDA not available. Input remains on CPU.")
|
| 113 |
+
|
| 114 |
+
|
| 115 |
print(f"Running inference for sample index {sample_index}...")
|
| 116 |
with torch.no_grad():
|
| 117 |
predicted_solution = model(single_initial_condition)
|
| 118 |
|
| 119 |
+
# Move results back to CPU for plotting with Matplotlib
|
| 120 |
input_numpy = single_initial_condition.squeeze().cpu().numpy()
|
| 121 |
output_numpy = predicted_solution.squeeze().cpu().numpy()
|
| 122 |
|
| 123 |
+
# Create Matplotlib figures
|
| 124 |
fig_input, ax_input = plt.subplots()
|
| 125 |
im_input = ax_input.imshow(input_numpy, cmap='viridis')
|
| 126 |
ax_input.set_title(f"Initial Condition (Sample {sample_index})")
|
|
|
|
| 147 |
|
| 148 |
with gr.Row():
|
| 149 |
with gr.Column():
|
|
|
|
|
|
|
| 150 |
sample_input_slider = gr.Slider(
|
| 151 |
minimum=0,
|
| 152 |
maximum=9999,
|
|
|
|
| 166 |
)
|
| 167 |
|
| 168 |
def load_initial_data_and_predict():
|
| 169 |
+
# Ensure model and dataset are loaded when the space starts
|
| 170 |
load_model()
|
| 171 |
+
load_dataset()
|
| 172 |
+
# Run inference for the default value (index 0)
|
| 173 |
return run_inference(0)
|
| 174 |
|
| 175 |
demo.load(load_initial_data_and_predict, inputs=None, outputs=[input_image_plot, output_image_plot])
|