Update app.py
Browse files
app.py
CHANGED
|
@@ -1,31 +1,10 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
import torchaudio
|
| 3 |
-
import torch
|
| 4 |
-
import os
|
| 5 |
-
from rave import RAVE # Assuming rave.py or pip package is available
|
| 6 |
-
from huggingface_hub import hf_hub_download
|
| 7 |
-
|
| 8 |
-
# β
Available RAVE models (can expand dynamically from HF repo)
|
| 9 |
-
RAVE_MODELS = {
|
| 10 |
-
"Guitar": "guitar_iil_b2048_r48000_z16.ts",
|
| 11 |
-
"Soprano Sax": "sax_soprano_franziskaschroeder_b2048_r48000_z20.ts",
|
| 12 |
-
"Organ (Archive)": "organ_archive_b2048_r48000_z16.ts",
|
| 13 |
-
"Organ (Bach)": "organ_bach_b2048_r48000_z16.ts",
|
| 14 |
-
"Voice Multivoice": "voice-multi-b2048-r48000-z11.ts",
|
| 15 |
-
"Birds Dawn Chorus": "birds_dawnchorus_b2048_r48000_z8.ts",
|
| 16 |
-
"Magnets": "magnets_b2048_r48000_z8.ts",
|
| 17 |
-
"Whale Songs": "humpbacks_pondbrain_b2048_r48000_z20.ts"
|
| 18 |
-
}
|
| 19 |
-
|
| 20 |
-
MODEL_CACHE = {}
|
| 21 |
-
|
| 22 |
import gradio as gr
|
| 23 |
import torchaudio
|
| 24 |
import torch
|
| 25 |
import numpy as np
|
| 26 |
from huggingface_hub import hf_hub_download
|
| 27 |
|
| 28 |
-
# β
|
| 29 |
RAVE_MODELS = {
|
| 30 |
"Guitar": "guitar_iil_b2048_r48000_z16.ts",
|
| 31 |
"Soprano Sax": "sax_soprano_franziskaschroeder_b2048_r48000_z20.ts",
|
|
@@ -40,7 +19,7 @@ RAVE_MODELS = {
|
|
| 40 |
MODEL_CACHE = {}
|
| 41 |
|
| 42 |
def load_rave_model(model_name):
|
| 43 |
-
"""Load
|
| 44 |
if model_name in MODEL_CACHE:
|
| 45 |
return MODEL_CACHE[model_name]
|
| 46 |
|
|
@@ -55,31 +34,29 @@ def load_rave_model(model_name):
|
|
| 55 |
return model
|
| 56 |
|
| 57 |
def apply_rave(audio, model_name):
|
| 58 |
-
"""Apply selected RAVE
|
| 59 |
model = load_rave_model(model_name)
|
| 60 |
|
| 61 |
-
# Convert numpy audio
|
| 62 |
audio_tensor = torch.tensor(audio[0]).unsqueeze(0) # [1, samples]
|
| 63 |
sr = audio[1]
|
| 64 |
|
| 65 |
-
# β
|
| 66 |
if sr != 48000:
|
| 67 |
audio_tensor = torchaudio.functional.resample(audio_tensor, sr, 48000)
|
| 68 |
sr = 48000
|
| 69 |
|
| 70 |
with torch.no_grad():
|
| 71 |
-
# β
|
| 72 |
-
# TorchScript models are usually structured like: model.encode(x) / model.decode(z)
|
| 73 |
z = model.encode(audio_tensor)
|
| 74 |
processed_audio = model.decode(z)
|
| 75 |
|
| 76 |
return (processed_audio.squeeze().cpu().numpy(), sr)
|
| 77 |
|
| 78 |
-
|
| 79 |
-
# π Gradio Interface
|
| 80 |
with gr.Blocks() as demo:
|
| 81 |
gr.Markdown("## π RAVE Style Transfer on Stems")
|
| 82 |
-
gr.Markdown("Upload audio,
|
| 83 |
|
| 84 |
with gr.Row():
|
| 85 |
audio_input = gr.Audio(type="numpy", label="Upload Audio", sources=["upload", "microphone"])
|
|
@@ -88,7 +65,6 @@ with gr.Blocks() as demo:
|
|
| 88 |
with gr.Row():
|
| 89 |
output_audio = gr.Audio(type="numpy", label="Transformed Audio")
|
| 90 |
|
| 91 |
-
# API + UI trigger
|
| 92 |
process_btn = gr.Button("Apply Style Transfer")
|
| 93 |
process_btn.click(fn=apply_rave, inputs=[audio_input, model_selector], outputs=output_audio)
|
| 94 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torchaudio
|
| 3 |
import torch
|
| 4 |
import numpy as np
|
| 5 |
from huggingface_hub import hf_hub_download
|
| 6 |
|
| 7 |
+
# β
Map of model names to files on Hugging Face
|
| 8 |
RAVE_MODELS = {
|
| 9 |
"Guitar": "guitar_iil_b2048_r48000_z16.ts",
|
| 10 |
"Soprano Sax": "sax_soprano_franziskaschroeder_b2048_r48000_z20.ts",
|
|
|
|
| 19 |
MODEL_CACHE = {}
|
| 20 |
|
| 21 |
def load_rave_model(model_name):
|
| 22 |
+
"""Load TorchScript RAVE model from Hugging Face Hub."""
|
| 23 |
if model_name in MODEL_CACHE:
|
| 24 |
return MODEL_CACHE[model_name]
|
| 25 |
|
|
|
|
| 34 |
return model
|
| 35 |
|
| 36 |
def apply_rave(audio, model_name):
|
| 37 |
+
"""Apply selected RAVE model to uploaded audio."""
|
| 38 |
model = load_rave_model(model_name)
|
| 39 |
|
| 40 |
+
# Convert numpy audio to torch tensor
|
| 41 |
audio_tensor = torch.tensor(audio[0]).unsqueeze(0) # [1, samples]
|
| 42 |
sr = audio[1]
|
| 43 |
|
| 44 |
+
# β
Resample if needed (most RAVE models expect 48kHz)
|
| 45 |
if sr != 48000:
|
| 46 |
audio_tensor = torchaudio.functional.resample(audio_tensor, sr, 48000)
|
| 47 |
sr = 48000
|
| 48 |
|
| 49 |
with torch.no_grad():
|
| 50 |
+
# β
TorchScript models have encode & decode methods
|
|
|
|
| 51 |
z = model.encode(audio_tensor)
|
| 52 |
processed_audio = model.decode(z)
|
| 53 |
|
| 54 |
return (processed_audio.squeeze().cpu().numpy(), sr)
|
| 55 |
|
| 56 |
+
# π Gradio UI
|
|
|
|
| 57 |
with gr.Blocks() as demo:
|
| 58 |
gr.Markdown("## π RAVE Style Transfer on Stems")
|
| 59 |
+
gr.Markdown("Upload audio, pick a RAVE model, and get a transformed version.")
|
| 60 |
|
| 61 |
with gr.Row():
|
| 62 |
audio_input = gr.Audio(type="numpy", label="Upload Audio", sources=["upload", "microphone"])
|
|
|
|
| 65 |
with gr.Row():
|
| 66 |
output_audio = gr.Audio(type="numpy", label="Transformed Audio")
|
| 67 |
|
|
|
|
| 68 |
process_btn = gr.Button("Apply Style Transfer")
|
| 69 |
process_btn.click(fn=apply_rave, inputs=[audio_input, model_selector], outputs=output_audio)
|
| 70 |
|