Update app.py
Browse files
app.py
CHANGED
|
@@ -19,8 +19,28 @@ RAVE_MODELS = {
|
|
| 19 |
|
| 20 |
MODEL_CACHE = {}
|
| 21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
def load_rave_model(model_name):
|
| 23 |
-
"""Load a RAVE model from Hugging Face
|
| 24 |
if model_name in MODEL_CACHE:
|
| 25 |
return MODEL_CACHE[model_name]
|
| 26 |
|
|
@@ -29,7 +49,7 @@ def load_rave_model(model_name):
|
|
| 29 |
filename=RAVE_MODELS[model_name]
|
| 30 |
)
|
| 31 |
|
| 32 |
-
model =
|
| 33 |
model.eval()
|
| 34 |
MODEL_CACHE[model_name] = model
|
| 35 |
return model
|
|
@@ -42,17 +62,19 @@ def apply_rave(audio, model_name):
|
|
| 42 |
audio_tensor = torch.tensor(audio[0]).unsqueeze(0) # [1, samples]
|
| 43 |
sr = audio[1]
|
| 44 |
|
|
|
|
| 45 |
if sr != 48000:
|
| 46 |
audio_tensor = torchaudio.functional.resample(audio_tensor, sr, 48000)
|
| 47 |
sr = 48000
|
| 48 |
|
| 49 |
-
# Pass through model (encode -> decode)
|
| 50 |
with torch.no_grad():
|
|
|
|
|
|
|
| 51 |
z = model.encode(audio_tensor)
|
| 52 |
processed_audio = model.decode(z)
|
| 53 |
|
| 54 |
-
|
| 55 |
-
|
| 56 |
|
| 57 |
# π Gradio Interface
|
| 58 |
with gr.Blocks() as demo:
|
|
|
|
| 19 |
|
| 20 |
MODEL_CACHE = {}
|
| 21 |
|
| 22 |
+
import gradio as gr
|
| 23 |
+
import torchaudio
|
| 24 |
+
import torch
|
| 25 |
+
import numpy as np
|
| 26 |
+
from huggingface_hub import hf_hub_download
|
| 27 |
+
|
| 28 |
+
# β
Available RAVE models
|
| 29 |
+
RAVE_MODELS = {
|
| 30 |
+
"Guitar": "guitar_iil_b2048_r48000_z16.ts",
|
| 31 |
+
"Soprano Sax": "sax_soprano_franziskaschroeder_b2048_r48000_z20.ts",
|
| 32 |
+
"Organ (Archive)": "organ_archive_b2048_r48000_z16.ts",
|
| 33 |
+
"Organ (Bach)": "organ_bach_b2048_r48000_z16.ts",
|
| 34 |
+
"Voice Multivoice": "voice-multi-b2048-r48000-z11.ts",
|
| 35 |
+
"Birds Dawn Chorus": "birds_dawnchorus_b2048_r48000_z8.ts",
|
| 36 |
+
"Magnets": "magnets_b2048_r48000_z8.ts",
|
| 37 |
+
"Whale Songs": "humpbacks_pondbrain_b2048_r48000_z20.ts"
|
| 38 |
+
}
|
| 39 |
+
|
| 40 |
+
MODEL_CACHE = {}
|
| 41 |
+
|
| 42 |
def load_rave_model(model_name):
|
| 43 |
+
"""Load a TorchScript RAVE model directly from Hugging Face."""
|
| 44 |
if model_name in MODEL_CACHE:
|
| 45 |
return MODEL_CACHE[model_name]
|
| 46 |
|
|
|
|
| 49 |
filename=RAVE_MODELS[model_name]
|
| 50 |
)
|
| 51 |
|
| 52 |
+
model = torch.jit.load(model_file, map_location="cpu")
|
| 53 |
model.eval()
|
| 54 |
MODEL_CACHE[model_name] = model
|
| 55 |
return model
|
|
|
|
| 62 |
audio_tensor = torch.tensor(audio[0]).unsqueeze(0) # [1, samples]
|
| 63 |
sr = audio[1]
|
| 64 |
|
| 65 |
+
# β
resample if needed
|
| 66 |
if sr != 48000:
|
| 67 |
audio_tensor = torchaudio.functional.resample(audio_tensor, sr, 48000)
|
| 68 |
sr = 48000
|
| 69 |
|
|
|
|
| 70 |
with torch.no_grad():
|
| 71 |
+
# β
pass audio through RAVE TorchScript (encode/decode)
|
| 72 |
+
# TorchScript models are usually structured like: model.encode(x) / model.decode(z)
|
| 73 |
z = model.encode(audio_tensor)
|
| 74 |
processed_audio = model.decode(z)
|
| 75 |
|
| 76 |
+
return (processed_audio.squeeze().cpu().numpy(), sr)
|
| 77 |
+
|
| 78 |
|
| 79 |
# π Gradio Interface
|
| 80 |
with gr.Blocks() as demo:
|